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Abstract

Bacterial single-cell RNA sequencing has the potential to elucidate within-

population heterogeneity of prokaryotes, as well as their interaction with host

systems. Despite conceptual similarities, the statistical properties of bacterial

single-cell datasets are highly dependent on the protocol, making proper process-

ing essential to tap their full potential. We present BacSC, a fully data-driven
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computational pipeline that processes bacterial single-cell data without requir-

ing manual intervention. BacSC performs data-adaptive quality control and

variance stabilization, selects suitable parameters for dimension reduction, neigh-

borhood embedding, and clustering, and provides false discovery rate control in

differential gene expression testing. We validated BacSC on a broad selection

of bacterial single-cell datasets spanning multiple protocols and species. Here,

BacSC detected subpopulations in Klebsiella pneumoniae, found matching struc-

tures of Pseudomonas aeruginosa under regular and low-iron conditions, and

better represented subpopulation dynamics of Bacillus subtilis. BacSC thus sim-

plifies statistical processing of bacterial single-cell data and reduces the danger

of incorrect processing.

Keywords: bacterial single-cell RNA sequencing, phenotypic heterogeneity, statistical
analysis, data processing, computational pipeline, data thinning, synthetic data
generation, scanpy
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized genetic analysis of eukaryotic cell compendia
by allowing researchers to extract individual cells’ gene expression profiles and obtain new insights on
intracellular mechanisms, as well as the structure and dynamics within entire populations of cells [1–
3]. These advances have led, among others, to a better understanding of immune responses [4], disease
progression [5], or advancements in drug development [6]. Consequently, similar insights into microbial
heterogeneity are expected from scRNA-seq of bacterial populations, opening up new avenues for assessing
antimicrobial resistance, evolutionary pathways, or within-population differences in response to external
conditions [7]. In addition, bacterial scRNA-seq yields new ways to analyze interactions between the
isogenic microbiome and host systems, for example in toxin regulation [8, 9], formation of metabolic
niches [10], and the analysis of microbial spatial heterogeneity [11].

Applying scRNA-seq technologies to bacteria has however proven to be challenging, e.g. due to low
overall transcript abundance, the short half-life of bacterial mRNA, and difficulties in cell lysis due to
sturdier cell walls [12–15]. Recently, multiple protocols have been developed that enable scRNA-seq of
bacteria on larger scales by tackling these challenges in different ways [13, 14, 16–19]. For example,
ProBac-seq [18] uses a library of oligonucleotide probes to target mRNAs, while BacDrop [13] uses a
two-stage cell barcoding procedure to increase cell numbers.

Datasets from scRNA-seq contain gene expression counts for each UMI (unique molecular identifier)
and are typically sparse, high-dimensional and noisy, requiring specialized methods and particular care
in their statistical processing to obtain biologically meaningful representations [20, 21]. This process has
been extensively discussed for eukaryotic cells, leading to well-documented benchmarks [22, 23], best
practices [24–26], and methods to select adequate hyperparameters [27–29] for each step of the statistical
analysis pipeline. For bacterial scRNA-seq, no such guidelines exist yet, prompting the use of default
parameters and methods without prior assessment of their statistical validity and suitability for the data
at hand. This may, however, lead to suboptimal or even flawed representations of the data, which can
severely impact the quality of biological insights gained from downstream analyses.

Each step in a typical statistical processing pipeline developed for the analysis of eukaryotic scRNA-seq
[24, 26] poses new statistical challenges when applied to bacterial scRNA-seq data:

• In quality control, differences in sparsity and sequencing depth have to be accounted for when filtering
out low-quality genes or cells [30].

• Variance stabilization is a crucial step to ensure comparability for all sequenced cells, but scaling the
data to a common sequencing depth and the choice of an imputation value for zero replacement must
be done with the statistical properties of the data in mind [21, 22].

• The number of principal components used for low-dimensional data representation, as well as the
number of neighbors and minimal distance used in UMAP embeddings, are hyperparameters that are
commonly chosen in a heuristic fashion, but have a significant impact on downstream analysis and
visual representation of the data [27, 31].

• The resolution parameter in cell type clustering is also often determined by visual trial-and-error
procedures [32].

• Finally, recent studies show that differential expression testing between cell types suffers from a double-
dipping issue that inflates the false discovery rate [29] if not accounted for.

In this study, we address these challenges by developing a standard workflow for processing bacterial
scRNA-seq gene expression data that does not require the selection of modeling choices or manual tuning
of parameters. We introduce BacSC, a computational pipeline for automatic processing of scRNA-seq
data that is applicable to datasets generated by various bacterial scRNA-seq protocols. BacSC reevaluates
the validity of methods used in each of the steps outlined above in the context of bacterial scRNA-seq,
adjusts methods if necessary, and automatically chooses suitable hyperparameters in a data-driven way.
To this end, BacSC provides tools for data integration and quality control of bacterial scRNA-seq data,
and performs a simple, yet powerful variance stabilizing transform that is suitable for scRNA-seq data
with varying sequencing depth and high zero inflation. Using techniques from data thinning [31, 33] and
knockoff generation [27, 34], BacSC is able to select suitable parameters and perform dimensionality
reduction, neighborhood embedding, and cell-type clustering without requiring user intervention. BacSC
also offers FDR control for differential expression testing of bacterial scRNA-seq data through contrasting
p-values with synthetic null data[29, 35].

To validate the steps taken in BacSC, we compared the statistical properties of 13 datasets generated
with ProBac-seq [18, 36] and BacDrop [13], emphasizing their low sequencing depth, high zero inflation,
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and differences in marginal gene distribution. As a proof of concept, BacSC was able to distinguish the
same cell types as previously shown through analysis with default or manually chosen parameters for all
datasets with known biological structure. BacSC additionally showed improved ability to describe the
transitional nature of cell competence in B. subtilis, was able to give a more clear distinction of cells
expressing mobile genetic elements in K. pneumoniae, and discovered new cellular subpopulations in K.

pneumoniae and P. aeruginosa. When applied to a combination of P. aeruginosa cells grown under regular
and iron-reduced conditions, BacSC was able to simultaneously integrate cells from both conditions based
on their gene expression profiles and detect differential expression of genes related to iron acquisition.

BacSC is available as a modular framework in Python that seamlessly integrates into the scanpy
[37] workflow and allows for direct downstream analysis with other tools from the scverse [38]. BacSC is
available on GitHub (https://github.com/bio-datascience/BacSC).
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2 Results

2.1 Explorative comparison of bacterial scRNA-seq technologies reveals

differences in key statistical properties

To ensure the cross-platform and cross-species applicability of BacSC, we gathered a total of 13 bacterial
scRNA-seq datasets that were generated with two different sequencing protocols, ProBac-seq [18, 36], and
BacDrop [13] (see section 3). The datasets encompass five bacterial species (Pseudomonas aeruginosa,

Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium), further distinguished
by strain, growth environment, or treatment condition (Table 1).

Dataset Species/strain Condition Protocol Source

Pseudomonas balanced PB P. aeruginosa PAO1 balanced growth ProBac-seq This study

Pseudomonas li PB P. aeruginosa PAO1 Low Iron environment ProBac-seq This study

Ecoli balanced PB E. coli MG1655 balanced growth ProBac-seq This study

Bsub minmed PB B. subtilis 168 minimal media ProBac-seq McNulty et al. [18]

Bsub damage PB B. subtilis 168 DNA damage induced by
Mitomycin C

ProBac-seq This study

Bsub MPA PB B. subtilis 168 MPA energy stress ProBac-seq This study

Klebs antibiotics BD K. pneumoniae MGH66 6 samples, treated with one
of 3 antibiotics (2 samples
each): Meropenem, Gen-
tamicin, Ciprofloxacin

BacDrop Ma et al. [13]

Klebs untreated BD K. pneumoniae MGH66 Untreated culture (2 sam-
ples)

BacDrop Ma et al. [13]

Klebs BIDMC35 BD K. pneumoniae BIDMC35 Untreated culture BacDrop Ma et al. [13]

Klebs 4species BD K. pneumoniae MGH66 Untreated culture BacDrop Ma et al. [13]

Ecoli 4species BD E. coli 10ß Untreated culture BacDrop Ma et al. [13]

Efaecium 4species BD E. faecium EnGen0052 Untreated culture BacDrop Ma et al. [13]

Pseudomonas 4species BD P. aeruginosa PAO1 Untreated culture BacDrop Ma et al. [13]

Table 1 Description of datasets used to benchmark BacSC. All datasets are named by the convention
species condition protocol. Datasets from ProBac-seq are marked with the suffix ” PB”, datasets from BacDrop are marked
with ” BD”

The number of genes per dataset was mostly dependent on the species (Figure 2A), and ranged between
5,572 (P. aeruginosa) and 2,350 (E. faecium). The sequencing depth per cell was highly dependent on
the sequencing method, with data from BacDrop showing a median sequencing depth between 2 and 43,
while all datasets generated with ProBac-seq had at least a median sequencing depth of 150 (Figure 2B).
In contrast, datasets generated with BacDrop generally encompassed a higher number of cells (median
9,936) than datasets from ProBac-seq (median 3,773).

After filtering out cells with abnormally low or high expression and genes without reads in more than
one cell (See section 2.2), both protocols could be easily distinguished by the number of genes detected,
with all datasets from ProBac-seq encompassing at least 2,922 genes, while datasets from BacDrop con-
tained a maximum of 2,500 genes (Figure 2C, Table E1). This was in part due to the subsetting to 2,500
highly variable genes, which was only performed on the Klebs antibiotics BD, Klebs untreated BD, and
Klebs BIDMC35 BD datasets. The BacDrop data from the four species comparison comprised a much
lower numbers of genes (628 - 1606) without selection of highly variable genes. The number of cells gen-
erally differed more within the BacDrop data (103 - 48,511), while the ProBac-seq datasets had much
more stable cell numbers (1,910 - 13,801; Figure 2C, Table E1).

BacDrop only detected between 24 and 47 unique genes per cell on average, while ProBac-seq covered
at least 49 genes for each cell in every dataset (Figure 2D). Consequently, ProBac-seq had less zero entries
in the filtered read count matrices, with zeroes making up between 86% and 97% of all entries, while
BacDrop showed zero inflation numbers between 95% and 99.2% (Figure 2E). After quality control, we
observed similar discrepancies between protocols in sequencing depth. ProBac-seq not only covered more
genes per cell, but was also able to capture more transcripts, with median sequencing depths ranging from
103 to 794.5. BacDrop datasets only had a median sequencing depth of 45 or less after quality control
(Figure 2F; Table E1). We therefore reasoned that the usage of multiple probes per gene and subsequent
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aggregation through max-pooling in ProBac-seq (see Methods, [36]) leads to higher genome coverage and
sequencing depth for each cell.

2.2 Description of the BacSC pipeline

At its core, statistical processing of scRNA-seq data extracts information from raw transcriptome reads by
filtering, normalization, dimension reduction, and clustering steps [24, 26]. BacSC selects suitable methods
and automates the choice of hyperparameters for each step without the need for manual intervention
(except for quality control; Figure 1). Section 2.2 briefly describes each step, while we give more detailed
descriptions in the ”QUANTIFICATION AND STATISTICAL ANALYSIS” part of the STAR methods.

First, the data is subjected to quality control to filter out barcodes with abnormally low or high gene
expression (Figure 1A). Because our exploratory analysis showed that bacterial single-cell data differs
heavily in terms of average sequencing depth, number of expressed genes, and zero inflation, this step is
highly dependent on the experimental protocol used. Therefore, BacSC leaves this step as the only point
where manual intervention is necessary, but provides tools for outlier detection through median absolute
deviation (MAD) statistics [30] and aggregating probe-based data from ProBac-seq. As with eukaryotic
scRNA-seq data, the main data object after quality control in each dataset is a n× p-dimensional count
table X, containing the read counts of p features for n cells.

Next, the read count data must be normalized and scaled. Because bacterial scRNA-seq data shows
greatly reduced sequencing depth and increased zero inflation compared to eukaryotic scRNA-seq, special
care has to be taken in this step [39, 40]. BacSC first scales each cell individually to have the same number
of reads, and subsequently log-transforms the data. The pseudocount introduced in this step is gene-
specific [22], with overdispersion parameters calculated through sctransform [41] (Figure 1A). Finally,
each gene is scaled to have zero mean and unit variance over all cells.

After variance stabilization, the data is reduced to a lower-dimensional representation by singular
value decomposition (SVD) on the data. The embedding dimensionality k in this step of the scRNA-seq
processing workflow is often set manually, e.g. by finding an ”elbow” in the plot of SVD loadings [25].
BacSC instead uses a count-splitting approach to find a good value for k, which was described by Neufeld
et al. [31]. For this, the raw counts after quality control are split into a training and test dataset, and
the variance-stabilizing transform is applied to both datasets. Then, the latent dimensionality k with
minimal reconstruction error between the k-dimensional embedding of the training data and the full test
data is chosen (Figures 1A, B1).

UMAP (Uniform Manifold Approximation and Projection) plots [42] are a popular tool for two-
dimensional visualization of scRNA-seq data to preserve the local structure and point out global
differences in higher-dimensional data. The algorithm is largely dependent on three parameters - the
latent dimensionality k, the number of neighbors nneighbors considered for each cell, as well as the mini-
mal distance mindist between points. These parameters are often adjusted manually until a satisfactory
picture arises. To eliminate this manual step, BacSC uses the negative-control approach described by
scDEED [27] to determine the latter two latent parameters. scDEED calculates a reliability score - the
correlation between the distance vectors from a cell to its neighbors before and after UMAP embedding
- and compares them to the distribution of contrast scores on a randomly permuted dataset (Figures
1A, B1). It then selects the parameter combination for which the amount of cells with abnormally low
reliability scores is minimized.

Cell clusters in scRNA-seq data are typically detected through the the Louvain [43] and Leiden [44]
algorithms. Both algorithms aim to maximize the modularity of partition over all cells with respect
to a resolution parameter res. Once again, this parameter is usually chosen manually to fit the struc-
ture observed in the UMAP or PCA embeddings. Computational determination of a feasible resolution
parameter that robustly detects cell clusters without creating too many subclusters is, however, not
straightforward. BacSC uses the train and test dataset obtained from count splitting and introduces a
new gap statistic based on the difference in modularity between two clusterings on the test data - one
calculated on the train data and one assigned randomly. Maximizing this gap statistic allows to find a
value for res for which the obtained clustering on the train data also generalizes well to the structure of
the test data Figures 1A, B2).

Bacterial single-cell sequencing allows to characterize heterogeneity within bacterial populations in
unprecedented detail. The discovery of subpopulations and the description and interpretation of different
cell types in bacterial populations is therefore still at an early stage. To characterize previously unknown
cell types, automatic selection of signature genes for each cluster is often achieved through differential
expression (DE) testing [24]. For this task, BacSC provides capabilities for DE testing that takes the
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recently popularized problem of ”double dipping” for DE testing of cell types into account [29, 45, 46].
In short, using the same information (gene expression) to define a clustering as well as the subsequently
determining DE genes to characterize these clusters results in an inflated false discovery rate (FDR).
BacSC solves this issue by adapting the ClusterDE method [29] for FDR control. Due to the highly
sparse nature of bacterial single-cell data, BacSC uses a modified version of scDesign2 [47] to generate
the synthetic null data. Further, BacSC also adapts ClusterDE to achieve better results for highly uneven
cluster proportions (Figures 1B, , B3).

To validate our pipeline, we applied BacSC to all datasets described in Table 1. For quality control, we
manually set dataset-specific filtering parameters on minimal sequencing depth and MAD cutoff (Table
E2), based on visual inspection of the distribution of sequencing depth and number of unique genes per
cell. After variance stabilization, we further reduced the Klebs antibiotics BD, Klebs untreated BD, and
Klebs BIDMC35 BD datasets to 2,500 highly variable genes based on their standardized variances [48].
All other steps of BacSC do not require any manual intervention, and were thus performed automatically.
The determined data distribution, as well as parameters for latent dimensionality, number of neighbors,
minimal distance, and clustering resolution are shown in Table E2.

2.3 BacSC uncovers new biological structures in datasets obtained from

different bacterial scRNA-seq protocols

2.3.1 Transitions between cellular states in B.subtilis are pronounced by BacSC

To show the validity of the transformations and parameters selected in BacSC, we first investigated the
Bsub minmed PB dataset (Figures 3, D18). This data was generated by [18] to validate the ProBac-seq
method. The original analysis with default parameters in Seurat [48] discovered four distinct subpop-
ulations with multiple subclusters and different functionality. In the first two dimensions of the PCA
embedding suggested by BacSC, three larger subpopulations were immediately apparent (Figure 3A),
while a fourth cluster with only 20 cells emerged in the UMAP embedding with BacSC’s selected parame-
ters (Figure 3B). Clustering with the automatically determined resolution resulted in five cell type clusters
(Figure 3B).

Because of the ”double-dipping” issue described above, DE testing produced large numbers for genes
with very small p-values for each cell type (Figure D18I). Counteracting this through the p-value correc-
tion in BacSC revealed characteristic genes for each cell type (Figure 3E-G), but only the two smallest
clusters (3 and 4) had genes significant at a FDR level of α = 0.05 (Figure D18J, Table E4).

Cell type 4 showed increased expression of many sporulation genes (spoIVA, spoVID, spoIID), while
the marker genes in cell type 3 contained many genes associated with cell competence (comFA, comGD,

comGB, comGA, comGC, comFC ). These subpopulations were also found as clusters 9, respectively 6/8
in [18]. Cell type 0 contained cells with very low sequencing depths (Figure 3C, D), and many genes were
significantly underexpressed at an FDR level of 0.1 (Table E4). The genes with the highest contrast scores
for this cell type partially overlapped with genes found in clusters 0 and 3 in the original publication.
Similarly, cell type 1 contained many upregulated genes at an FDR of 0.2. For cell type 2, many structural
flagella components (fliY, fliD, fliK, fliI, fliT ) were among the genes with the highest contrast scores,
but only differentially expressed at an FDR level of 0.26. The region containing cell types 1 and 2 from
BacSC therefore corresponds to clusters 1, 2, 3, and 5 from [18].

Notably, the UMAP from BacSC showed continuous streams of cells between the cell types, especially
between cell types 0, 1, and 3 (Figure 3B), which were not visible in the original analysis [18]. We suspected
these cells to be in a transitional phase between two cell states. The development of competent cells (cell
type 3) is known to be procedural [49], which explains the transition of cells in and out of this cell type.

2.3.2 BacSC shows clear differences in response of K. pneumoniae to different

antibiotics

To showcase the applicability of BacSC to data from different bacterial scRNA-seq protocols, we
revisited an analysis of six samples of Klebsiella pneumoniae generated with BacDrop [13]. The
Klebs antibiotics BD dataset contains two replicates for each of three antibiotic treatments, ciprofloxacin,
meropenem, and gentamicin.

Despite the high sparsity of the data (99.2%, Table E1), BacSC was able to successfully integrate all
six samples. The first two principal components already showed heterogeneity in the data in the form of
three clear subpopulations (Figure 4A). This was enhanced through the UMAP plot and data clustering
(Figure 4B), which revealed two major clusters of cells that split up into two, respectively three cell
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types, and three small cell clusters. For all cell types, a subset of genes was differentially expressed at
FDR levels of 0.2 or lower (Table E5).

The cell types contained in the largest cellular subpopulation (0, 1, and 2) almost perfectly matched
the separation by antibiotics shown in Figure 4D. Within these clusters, cells from both samples were
distributed evenly, suggesting no residual batch effects. Cell types 3 and 5 made up all cells in the
second large subpopulation, which contained a higher number of unique expressed genes than the rest
of the dataset (Figure 4C). Both of these clusters showed significant differential expression of IS903B
transposase-related genes (RS09075, RS22855 ), which matches the subpopulation of mobile genetic ele-
ments (MGE) described by [13]. Contrary to the original analysis, this subpopulation separated more
from the bulk of the cells in BacSC’s UMAP embedding (Figure 4B). The small subpopulations (Cell
types 4, 6, 7) were all characterized by a few genes that were barely expressed in other cells.

2.4 Processing with BacSC discovers a distinct response of P. aeruginosa to

a low-iron environment

2.4.1 Bacterial cell types of exponentially grown P. aeruginosa are similar in

growth conditions with differing iron availability

We next tested if BacSC could recover environment-specific microbial cell types from bacterial cultures
grown under different external conditions. For this, we investigated the Pseudomonas balanced PB and
Pseudomonas li PB datasets. Both datasets contain cells from P. aeruginosa in exponential growth in
minimal media, and sequenced with ProBac-seq. For the first sample, cells were grown in regular minimal
media (MOPS with 10 µM FeSO4), while for the second sample, bacteria were exposed to a mild iron
limitation (0.5 µM FeSO4), which resembles a growth condition mimicking competition between host and
pathogen for the essential trace element during infection.

We first processed each dataset individually with BacSC. The diagnostic plots for both datasets (D22,
D23) showed that normalized sequencing depths, as well as latent dimensionality, neighborhood embed-
ding, and clustering resolution parameters found by BacSC were very similar. The PCA and UMAP
embeddings for both datasets also showed similar patterns (Figures 5A, B, C6A, B, C7A, B). The sequenc-
ing depth vs. genome coverage plots (Figures 5D, E) revealed that in both populations, a subset of cells
had lower coverage at high sequencing depths. This subgroup was identified as cluster 1 in the cell type
clustering. Both datasets further contained two larger subpopulations (cell types 0 and 2), and one smaller
cluster (cell type 3).

The lower-coverage cell types in both datasets were characterized by 51 and 82 genes respectively,
that were differentially expressed at an FDR of 0.05 (Tables E6, E7) when compared to the rest of the
population. Of the 95 genes differentially expressed in either of the two datasets, 38 genes appeared in
both, including 22 genes encoding components of the 30S and 50S subunits of the ribosome (rpsA, rpsB,
rplQ, rpsKD, rplFO, rplDWBCP, rpmC, rplEN, rpsJ, rpsG, rplJ, rplK, rpsRI, Figures C6E-G, C7E-G),
indicating increased translation activity. Cell type 3 also showed considerable overlap between DE genes at
the 5%-level. Here, all 22 genes that were DE in the balanced growth sample were also among the 34 genes
detected in the low-iron culture. Many of these genes encode the R-type pyocin R2 (PA0617, PA0618,
PA0619, PA0620, PA0622, PA0623, PA0640, Figures C6E-G, C7E-G), a phage tail-like bacteriocin that
specifically targets and kills competing bacteria by puncturing their cell membranes [50, 51]. For cell type
2, which contained cells with a large number of expressed genes, a large number of genes was detected
to be DE at an FDR of 0.05, with underexpressed ribosomal genes showing the highest contrast scores,
complementary to the set of DE genes in the low-coverage cell type. The remaining cell type 0 contained
cells with low sequencing depth and showed no statistically significant DE genes.

2.4.2 Combined data processing allows for the detection of genes related to iron

acquisition

To analyze the differences between the cell populations from balanced and low-iron growth conditions, we
created a combined dataset by concatenating the raw count matrices of both experiments. Processing with
BacSC revealed a similar common structure as in the individual datasets (Figures Figure 5C, F, C8A-
D), confirming the similarities detected in the previous section. While the R2 pyocin cluster (cell type 5)
showed good mixing between both conditions, the cell populations with high expression of ribosomal genes
distinctly separated and were even clustered into different cell types (2 and 3, (Figure 5C)). Additionally,
a new cell type (cluster 4) emerged in the combined dataset, which was not detected in either of the
individual datasets. Similar to cell type 0, this cluster showed reduced expression of ribosomal genes (rplF,

8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.22.600071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.22.600071
http://creativecommons.org/licenses/by-nc/4.0/


rplP, rplD, rplB), as well as genes encoding for ATP-synthase and the TCA cycle component succinate
dehydrogenase (atpA, atpD, atpH, sdhA, sdhC, Figure C8E-G), suggesting a low energy state. For cell
types 0 and 1, a within-cluster shift of cells by condition was also visible (Figure 5J). As in the individual
data set analyses, marker genes for all cell types except cell type 1 were detected by BacSC at FDR levels
smaller than 0.2.

Plotting the cell type proportions for each sample showed that cell types 2 and 3 almost exclusively
contained cells from one condition, while the other cell types showed no notable changes in proportionality
between the balanced and low-iron conditions (Figure 5M). We confirmed this visual result by differential
abundance testing with scCODA [52] and detected cell types 2 and 3 as differentially abundant at an
FDR level of 0.2.

Finally, we examined the differences in gene expression between cells from both growth conditions.
For this, we first performed DE testing between the balanced growth and low-iron cell populations with a
Wilcoxon rank-sum test. Since this test setup does not suffer from double-dipping, we used the Benjamini-
Hochberg correction [53] to account for multiple comparisons, revealing 186 genes with corrected p-values
of less than 0.05. To verify our findings, we used bulk sequencing results from the Co-PATHOgenex study
[54], also testing differential expression between cells grown in balanced and iron-reduced conditions.
Of note, in this study an abrupt iron limitation was artificially induced by the addition of the iron
chelator 2,2’-bipyridine shortly before harvest. We compared the gene set found by BacSC on the bacterial
scRNA-seq data with three gene sets detected on the Co-PATHOgenex data with different DE tests - the
method described in the Co-PATHOgenex paper, a logistic regression model, and DESeq2 [55], each at
a significance level of 0.05. The gene set from BacSC had good overlap with the gene sets found in bulk
data, as 42 of the 186 genes were detected by at least one other DE test, and the intersection of all four
gene sets contained 20 genes (Figure 5K). Furthermore, 26 of the 42 genes detected in the bulk data were
among the top 50 genes with the lowest adjusted p-values in the DE test on the bacterial scRNA-seq
data (Table E3). Investigating the gene expression levels and function of these 42 genes, we found most
of them to be overexpressed in the low-iron sample (Figure 5G-I, L). Furthermore, most of these genes
(e.g. PA4514, icmP, phuR) are known to be related to iron reception (Table E3).
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3 Discussion

The emergence of protocols for scRNA-seq of bacterial populations is about to transform microbiology
research by allowing to evaluate the transcriptional profiles of bacteria at an unprecedented combination
of scale and resolution. Despite their technological similarity, bacterial scRNA-seq datasets at their cur-
rent state differ significantly from eukaryotic scRNA-seq data in terms of sparsity and sequencing depth.
To facilitate the statistically sound processing of bacterial scRNA-seq data, we present BacSC, a compu-
tational pipeline that allows for easy, dataset-specific quality control and automatic variance stabilization,
low-dimensional representation, neighborhood embedding, clustering, and differential expression analysis
of such data.

By using a variance-stabilizing transform with gene-wise zero imputation parameters [22], BacSC
is able to adequately normalize gene expression data with very large amounts of zero entries and low
sequencing depth. We show that train-test splitting through data thinning [28, 33] and comparison to
negative control data in scDEED [27] provides ways to select suitable parameters for dimensionality
reduction, and neighborhood embedding. Furthermore, selecting a clustering resolution through our newly
defined gap statistic based on count splitting of the raw expression data reveals biologically distinct
subpopulations. To counteract FDR inflation when testing differential gene expression of bacterial cell
types, we extend the ClusterDE method [29] to highly disproportionate cluster sizes. Additionally, our
copula-based simulation setup adapts the approach from scDesign [47, 56] to bacterial scRNA-seq data. To
this end, we add correlation shrinkage [57, 58] and an adjustment for underestimation of small gene-gene
correlations.

Overall, BacSC is a highly flexible framework that performs statistical analysis of bacterial scRNA-
seq data independent of the underlying sequencing protocol, while avoiding common statistical pitfalls.
Through its capabilities for automated parameter selection, BacSC further allows for a set-and-forget
approach to bacterial scRNA-seq data processing, greatly simplifying these tasks. We demonstrated this
flexibility through application to 13 bacterial scRNA-seq datasets from two protocols across five different
species. Despite large differences in size and sequencing depth per cell even after manual quality control,
BacSC was able to integrate, cluster, and perform differential expression testing on each dataset without
needing any further user intervention.

The detected cell types and their marker genes showed remarkable overlap with the clusters previously
found through processing with default or manually selected parameters in multiple datasets [13, 18],
confirming the correctness of BacSC’s findings. BacSC was further able to better depict dynamics between
cellular subpopulations in B. subtilis and found new bacterial cell types in K. pneumoniae. Analyzing two
datasets from P. aeruginosa grown in environments with different iron availability, BacSC found similar
cell types, highlighting its robustness. After joint processing of both datasets with BacSC, differential
expression testing correctly detected various genes related to iron acquisition.

Its modular structure and seamless integration in scanpy [37] allow users to easily apply the entire
BacSC pipeline or parts of it to their own data, and perform downstream analysis with other methods
provided in the scverse [38]. In our studies, we used these capabilities to test for differential abundance
between cell type proportions with scCODA [52].

In addition to the described features, there are multiple areas where further improvements and exten-
sions to BacSC are possible. While we developed and evaluated BacSC with bacterial scRNA-seq data
in mind, the techniques used were designed for eukaryotic scRNA-seq analysis. Therefore, BacSC is in
principal also suited for this type of data, expanding its application range beyond the usecases shown here.

In its current state, BacSC uses methods that are seen as the baseline in scRNA-seq analysis [25].
While we adapted these techniques here to fit the properties of bacterial scRNA-seq data, there exist
a plethora of approaches, each with their own assumptions, that often show improved capabilities on
eukaryotic data [59]. Careful evaluation of these methods in the context of bacterial scRNA-seq requires
further efforts.

Finally, our improvements on the synthetic data generation algorithm for differential expression testing
currently only cover simulation of one homogeneous cell population. An extension to match the capabilities
of scDesign2 and scDesign3 [47, 56] in simulating multiple cell types, batches, trajectories, and spatial
information is an open challenge.

By eliminating the need to manually select suitable techniques and parameters, BacSC removes sources
of errors and allows for more efficient data processing. We therefore believe that BacSC provides an easily
applicable framework that facilitates proper statistical analysis of bacterial scRNA-seq data.
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and Culture of Lower Saxony (Niedersächsisches Ministerium für Wissenschaft und Kultur) BacData,
ZN3428. R.O.A. and C.L.M. were funded by the StressRegNet consortium within the Bavarian research
network bayresq.net funded through the Bavarian State Ministry of Science and Arts, Germany.

Author contributions

J.O. and C.L.M. designed the structure and individual steps of the BacSC pipeline, and conceived improve-
ments to existing methods. T.K., J.G.T. and S.H. generated data containing P. aeruginosa and E. coli

with ProBac-seq, A.Z.R. provided all datasets from B. subtilis. J.O. implemented the pipeline and con-
ducted all applications and tests. J.O., T.K., R.O.A., J.G.T., and A.Z.R. analyzed the results from BacSC
in a biological context, R.O.A. further performed analysis of the Co-PATHOgenex data. J.O. wrote the
manuscript with help from all other authors. All authors read and approved the manuscript.

Declaration of Interests

The authors declare no competing interests.

Supplemental information

• Supplemental pdf:

– Additional dataset analysis
– Supplemental figures B1-B5, C6-C17, D18-D31
– Supplemental tables E1-E17

• Pa probes.xslx: Probes used in ProBac-seq of P. aeruginosa

16

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.22.600071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.22.600071
http://creativecommons.org/licenses/by-nc/4.0/


STAR Methods

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the lead contact, Johannes Ostner (johannes.ostner@stat.uni-muenchen.de).

Materials Availability

Materials generated in this study are freely available at public repositories (see key resources table) or
by contacting the lead contact.

Data and Code Availability

Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of
publication. Accession numbers are listed in the key resources table. Intermediate datasets have been
deposited at zenodo and are publicly available as of the date of publication. DOIs are listed in the
key resources table. This paper analyzes existing, publicly available data. The accession numbers for
these datasets are listed in the key resources table. All original code has been deposited at GitHub
(https://github.com/bio-datascience/BacSC) and is publicly available as of the date of publication. DOIs
are listed in the key resources table. (additional citations in the key resources table: [60–62])

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For validating the performance of BacSC, we analyzed previously published scRNA-seq datasets.
For ProBac-seq data analysis, we used the Bsub minmed PB dataset from the original publica-
tion (GEO: GSE223752) [18]. For BacDrop data analysis, we selected seven datasets provided in
the original publication [13], and used the read count matrices published by the authors (GEO:
GSE180237). The Klebs BIDMC35 BD, Klebs 4species BD, Ecoli 4species BD, Efaecium 4species BD,
and Pseudomonas 4species BD datasets were used as provided. For the Klebs untreated BD, and
Klebs antibiotics BD datasets, we concatenated the count matrices from multiple samples before analysis
wth BacSC.

Furthermore, in this study we generated additional datasets using ProBac-seq, encompassing two
experiments on Bacillus subtilis, two samples of Pseudomonas aeruginosa, as well as one sample of
Escherichia coli.

ProBac-seq of B. subtilis

For the Bsub damage PB dataset, cells were grown to mid-log phase in spizizen’s minimal media (SMM)
and Mitomycin C (MMC, 0.5µg/ml final concentration) was added to wildtype B.subtilis (strain 168) as
reported by [63]. The Bsub MPA PB data contains B.subtilis cells grown in SMM as described by [64, 65]
to mid-log phase and challenged with Mycophenolic acid (MPA, 40µg/ml final concentration).

ProBac-seq of E. coli and P. aeruginosa

For the samples Ecoli balanced PB, Pseudomonas balanced PB and Pseudomonas li PB MOPS (morpho-
linepropanesulfonic acid) minimal medium (supplemented with 100 ng/µl thiamine) with 0.2 % glucose as
the sole carbon source was used [66]. To induce a mild iron limitation on Pseudomonas li PB, the FeSO4

concentration was lowered to 0.5 µM instead of the regular 10 µM. Single colonies of E. coli MAS1081
[67, 68] and PAO1 were used to inoculate precultures with regular MOPS and were grown for 11-12 hours
at 37°C with shaking at 180 rpm. After washing, main cultures in MOPS with normal iron or reduced
iron content were inoculated at an OD600 of 0.00002 and grown for 10-14 generations. Bacteria were
harvested in balanced growth conditions in early exponential phase (OD600 of 0.2-0.3).

METHOD DETAILS

ProBac-seq of B. subtilis

For all B. subtilis datasets, ProBac-seq was performed as described in the original method [18, 36].
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ProBac-seq of E. coli and P. aeruginosa

Further sample preparation for ProBac-seq was performed as previously described [18, 36], with slight
modifications. In brief, 1 ml of each culture was used for fixation with 1 % formaldehyde for 30 min at
room temperature. To increase the cell yield, all centrifugation steps were carried out at 7,000 x g for
up to 5 min. Overnight storage in MAAM (4:1 V:V dilution of methanol to acetic acid) was omitted.
All further steps were performed according to the protocol of the original method [18, 36]. PAO1-specific
probes were designed and generated as previously described without additional UMI extension. The
single-cell sequencing libraries were quality-checked and sequenced by the GMAK sequencing facility
(HZI, Braunschweig, Germany) on a NovaSeq SP flow cell (100 cycles, 28-10-10-90) resulting in up to
170 million reads per sample. Raw fastq files were processed with CellRanger v7.1.0 [69] with the option
–expect-cells 10000.

QUANTIFICATION AND STATISTICAL ANALYSIS

This section describes statistical details for the individual steps in the BacSC pipeline. Statistical details
and results from application of the BacSC pipeline to all datasets described in table 1 can be found in
supplementary figures D18-D31 and supplementary tables E1-E17.

Processing starts with a raw counts matrix X0 ∈ N
n0×p0

0 , which contains read counts of p0 genes for
n0 droplets.

Quality control

For datasets generated with ProBac-seq, multiple probe reads for each gene are available. As described in
the original publications [18, 36], we aggregated the probes by max-pooling. Furthermore, most datasets
from ProBac-seq were already quality-controlled in CellRanger [69] and therefore needed less additional
filtering. For all ProBac-seq datasets, we chose a minimum sequencing depth cutoff of 100. For data from
BacDrop, we used the minimum sequencing depth cutoff of 15, as provided in the original publication
[13]. For the three largest datasets (Klebs untreated BD, Klebs antibiotics BD, Klebs BIDMC35 BD), we
also selected 2,500 highly variable genes after variance stabilization. BacSC further removes genes that
were expressed in only a single cell, as variance stabilization for these genes is not possible. In contrast to
eukaryotic scRNA-seq datasets, removal of mitochondrial genes is not required for bacterial scRNA-seq,
as bacteria do not contain mitochondria. Still, other highly abundant types of RNA, such as rRNA and
tmRNA, can be removed at this point. For the analysis presented here, we did not perform any removal
of features beyond the preprocessing in CellRanger [69] for ProBac-seq or UMI-tools [70] for BacDrop.

Further outliers are detected by filtering cells based on median absolute deviations (MAD) of their
log-transformed total counts and number of expressed genes [30]: MAD(S) = mediann

i=1(| log(Si) −
median(log(S))|) where S is either the vector of sequencing depths

∑p0

j=1 X·,j or number of expressed
genes over all cells. A cell is considered an outlier if for either of the two metrics, |Si − median(S)| >
nmads ∗MAD(S), where nmads is the factor defined in table E2.

Table E2 gives an overview over the filtering parameters chosen for each dataset. After filtering, X0

is reduced to a matrix X ∈ N
n×p
0 of p genes and n cells.

Variance stabilization

For variance-stabilizing transformation (VST) of the filtered read counts, we follow the results from [22].
Assuming potential overdispersion of the count distribution, we use an approximation to the ideal VST
determined by the delta method, a log-transformation in combination with common-sum scaling of the
counts:

X̃i,j = log(
Xi,j

mi

+ ν) (1)

where mi =
∑p

j=1
Xi,j

mediann
k=1

(
∑p

j=1
Xk,j)

scales each cell’s counts to the median value of all sequencing depths. We

chose the median sequencing depth as a scaling factor to gain robustness to outliers in sequencing depth.
Adding a pseudocount ν before log-transformation is necessary to handle zero entries in X. As

described in [22], we set νj =
θj
4 for each gene j = 1 . . . p, where θj denotes the gene’s overdispersion

factor. Calculating this overdispersion factor is not straightforward for genes with very low numbers of

expressed genes, as the relation θj =
mean(X·,j)

2

V ar(X·,j−mean(X·,j))
becomes very sensitive to single entries in X.

Instead, we make use of the gene overdispersion estimates provided by sctransform [41], which jointly
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models all genes, and thus produces more robust estimates of θj . To this end, we apply sctransform to
the count matrix X, extract the overdispersion estimates, and use them in equation 1.

After VST, we scale each gene individually to zero mean and unit variance by applying scanpy’s scale
function [37], clipping large values at 10. This results in a normalized gene expression matrix Y ∈ R

n×p.

Dimension reduction

The selection of the best embedding dimensionality kopt through data thinning was described for Poisson-
distributed data in [31]. There, data thinning [33] is used to split the raw count data X into two n ×
p-dimensional datasets Xtrain and Xtest by a random binomial split on each individual entry in X. The
resulting train and test matrices are then both Poisson-distributed again. Because eukaryotic single-cell
data is typically assumed to follow a Negative Binomial (NB) distribution for each gene, [28] extended
the data-thinning approach to NB-distributed data. However, the lower read counts in bacterial scRNA-
seq suggest that the data might follow a linear instead of a quadratic mean-variance pattern and are
therefore Poisson-distributed.

To determine the distributional assumption for count splitting, we first calculate the mean µj and
variances σ2

j of X·,j for each gene j = 1 . . . p. We then compare Pearson correlation coefficients r of a

linear and a quadratic relation between µ and σ2. If rquadratic > rlinear, we assume X to be Negative
Binomial distributed, otherwise it is Poisson-distributed. The raw data distribution for each dataset is
shown in Table E2.

Depending on the chosen data distribution, X is split into two datasets by Poisson or NB count
splitting (Figure B1A, B). In both cases, we set the split ratio ϵ = 0.5 to ensure an even split between
train and test data and maximize the probability of obtaining a nonzero entry in train and test data if
Xi,j > 1. We then determine all genes or cells that have only one nonzero entry in Xtrain or Xtest, and
remove them from both data splits. In line with [31], we apply the VST described in section 3 to both
Xtrain and Xtest, using the θ parameters determined on the whole data to speed up computation, and
obtain transformed matrices Ytrain and Ytest.

To determine kopt, we perform a singular value decomposition (SVD) Ytrain = UΣV T on the training
data. For each k = 1 . . . 20, we then calculate the reconstruction loss as sum of squared differences between
the test data and the k-dimensional approximation of the SVD of the train data (Figure B1C):

Lk = ||Ytest − U·,1:kΣ1:k,1:kV
T
·,1:k||

2
F

kopt = argmin
k=1...20

L(k)
(2)

Data visualization

BacSC selects the latent parameters nneighbors and mindist for constructing a UMAP embedding of the
data through scDEED [27]. For every combination of nneighbors (the number of neighbors for each cell in
the neighborhood graph) and mindist (the effective minimum distance between points), scDEED defines
a reliability score for each cell as the Pearson correlation between the euclidean distances to the 50%
closest cells in PCA space and the euclidean distances to these cells after UMAP embedding. To obtain
a baseline distribution, another set of reliability scores is calculated on a permuted dataset where each
gene’s expression values are shuffled. scDEED then classifies the embedding of cells in the original dataset
as ”trustworthy”, ”undefined”, or ”dubious” based on the 95% and 5% quantiles of the distribution
of reliability scores in the permuted data (Figure B1D). Finally, the parameter combination with the
smallest number of dubiously embedded cells is selected (Figure B1E, F).

As scDEED is only available in R, the BacSC pipeline includes a Python implementation of
the method. For every dataset, we considered all pairwise combinations of parameters: nneighbors :
(10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250); mindist : (0.05, 0.1, 0.3, 0.5, 0.7).

Clustering

The resolution parameters in Louvain and Leiden clustering are essential for defining the granularity of
the resulting partition [44, 71]. Both algorithms aim to optimize the modularity or a similar metric of a
partition on the neighborhood graph defined during UMAP generation:

Modularity =
1

2m

∑

c

(ec − γ
K2

c

2m
) (3)
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where m is the total number of edges in the neighborhood graph, ec is the number of edges within cluster
c, and Kc is the sum of degrees over all nodes in cluster c, and γ is the resolution parameter. Generally, a
higher resolution parameter will lead to a more fine-grained clustering. While both algorithms effectively
approximate an optimal clustering for a given value of γ, the choice of a ”good” resolution parameter is
highly dependent on the structure and biological source of the data at hand [32, 72]. Larger datasets or
datasets from more complex communities generally contain more subclusters and thus warrant a larger
value of γ to detect all relevant subpopulations. On the other hand, choosing the resolution too large
will result in non-robust clusterings that are highly sensitive to small perturbations of the data [73].
Furthermore, cluster assignments and the number of subpopulations are not monotonic in γ, complicating
the evaluation of clustering quality [32]. In BacSC, we aim to automatically find a resolution parameter
that results in an informative, but stable clustering of the cells.

To this end, we adapt the idea from [28] and use the train and test datasets obtained through count
splitting for clustering evaluation. Starting with the variance-stabilized train and test data from dimen-
sionality reduction, we generate the neighborhood graph for both datasets with the k and nneighbors

parameters determined earlier. For each value of γ in a set of possible resolutions, we then perform Lei-
den or Louvain clustering on the training data, resulting in a cluster assignment ctrain. Since training
and test data contain the same cells, we can now obtain a measure for the robustness of the clustering
by calculating the modularity (3) for ctrain on the neighborhood graph of the test data (Figure B2A).
We denote this value with Mtest. Since modularity generally decreases with the number of clusters, we
cannot select the value of γ for which Mtest is maximal. Instead, we need to compare the test data reso-
lution to a baseline score for each resolution value. Therefore, we generate a random cluster assignment
on the test data by permuting the labels from ctrain and calculate Mrandom, the modularity of the ran-
dom clustering on the neighborhood graph of the test data. Finally, we select the resolution where the
gap statistic between test modularity and random modularity is maximal (Figure B2B, C):

resopt = argmax
γ

(Mtest −Mramdom) (4)

and perform a clustering with resopt on the full dataset to obtain cell type clusters (Figure B2D).
For processing the datasets in this manuscript, we used the Leiden algorithm and modularity score and
tested possible resolutions γ = (0.01, 0.03, 0.05, . . . 0.49). The same procedure is however also applicable
to Louvain clustering or other measures, e.g. the Constant Potts model [74].

Even though the resolution value determined by maximizing our gap statistic provides improvement
over random cluster assignment while being robust to small data perturbations, it is by no means the
only ”correct” resolution value. For some datasets, more fine-grained clusterings can give further insights
into subpopulations of the data. Rather, resopt may serve as a baseline clustering resolution that gives
an adequate first insight into the data.

Differential expression testing

Identifying genes with characteristic expression for cell clusters defined by the same gene expression
values is an instance of reusing information, or ”double dipping” [46], and controlling the false discovery
rate under such conditions is essential to achieve adequate results. The ClusterDE method [29] provides
FDR control for DE testing of cell types in eukaryotic scRNA-seq by contrasting the p-values of interest
with p-values calculated on a synthetically generated negative control dataset. In BacSC, we implement
a modified version of the algorithm that takes the characteristics of bacterial single-cell data into account
and allows for testing of highly disproportionate cell populations. The following description assumes a
DE test of cell type C with nC cells against the union of all other cell types, containing nC̄ = n − nC

cells (Figure B3A). Tests of differential gene expression between two cell types are possible in the same
manner, but the data needs to be subsetted to the clusters of interest first.

ClusterDE first generates negative control data with the same marginal gene distributions and gene-
gene correlations as the original data, but no intrinsic cluster structure. This synthetic data generation
is done with scDesign2 [47] or scDesign3 [56], which both use a Gaussian copula approach to generate
synthetic scRNA-seq data. To account for the high sparsity and low sequencing depth of bacterial scRNA-
seq data, we adapted the approach from scDesign2 in BacSC. In a first step, the marginal distribution
of raw counts is determined for every gene j. As in scDesign2, we consider four possible distributions -
Poisson (Poi), zero-inflated Poisson (ZIP), Negative Binomial (NB), and zero-inflated Negative Binomial
(ZINB). If the gene’s empirical variance σ2

j is larger than its empirical mean µj , we determine the gene
to be NB- or ZINB-distributed, otherwise its distribution is Poi or ZIP. We then fit the Poisson or NB
distribution with and without zero-inflation to X·,j through maximum likelihood estimation via BFGS,
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as implemented in the statsmodels package [75]. Because of the large number of zeros, we experienced
frequent convergence problems with NB estimation. To counteract this, we set the initial mean and
dispersion parameters for both NB and ZINB to the mean and dispersion of all nonzero entries in X·,j ,
and the initial zero inflation in the ZINB model to the proportion of zeros in X·,j . If both the NB and
ZINB models still do not converge, we instead use the estimates from the NB model with default starting
parameters, regardless of convergence. We then perform a likelihood-ratio test between the log-likelihoods
of the zero-inflated and regular model. If the null hypothesis of no difference in log-likelihood between
both models is rejected at the α = 0.05 level, we model the gene with zero-inflation, otherwise we use
the non-zero-inflated estimate. Denote the chosen distribution for gene j with its estimated parameters
as as Dj(ϕj)

As in scDesign2, we now transform the discrete counts for each gene to continuous quantiles through
a uniform approximation with the corresponding cumulative distribution function (CDF) D̂j(ϕj):

U·,j = VjD̂j(X·,j , ϕj) + (1− Vj)D̂j(X·,j + 1, ϕj) (5)

with Vj ∼ Uniform(0, 1)n. We then transform these quantiles by the inverse CDF (denoted Φ−1) of
a standard normal distribution and calculate their empirical correlation matrix R ∈ R

p×p.
Contrary to eukaryotic scRNA-seq, where current datasets contain many more cells than genes, most

of our bacterial scRNA-seq data is underdetermined, with n < p (Table E1). Therefore, the entries of the
empirical covariance matrix must be shrunk to obtain a good estimate for R [57, 58]. To this end, we use
a Python reimplementation of the covariance shrinkage proposed in [76].

The uniform approximation 5 in the copula transformation is necessary to allow the use of Gaussian
copula for discrete count data, but shifts the count matrix by an average of 0.5. Since bacterial scRNA-
seq data contains mostly zero or very small entries, this leads to considerably lower gene-gene correlations
and gene variances in the generated data. To counteract this, we introduce a scaling factor δ on off-
diagonal entries of R where the absolute absolute value of the original data’s gene-gene correlation S is
larger than 0.1:

R̂i,j(δ) =

{

δRi,j , if |Si,j | > 0.1

Ri,j , otherwise
(6)

The scaled correlation matrix R̂(δ) is not guaranteed to be positive definite though. To obtain a
positive definite matrix R̃(δ) that is close to R̂(δ), we calculate the eigendecomposition (λ, v) of R̂(δ),
increase all eigenvalues by −λmin + 10−12 if the smallest eigenvalue λmin is negative, and set R̃(δ) =
v diag(λ̃) v−1 with the shifted eigenvalues λ̃. We then determine the ideal δ through a golden ratio
optimizer [77] with initial bracket (1, 2) that minimizes the sum of squared differences between the scaled
entries of R̃(δ) and S:

δ∗ = argmin
δ

∑

(i,j):|Si,j |>0.1

(Si,j − R̃(δ)i,j)
2 (7)

Scaling of the entries in R will slightly overestimate the gene means of the generated data (Figure
B3B), but gives better results for large gene variances and gene-gene correlations (Figure B3C, D). To
simulate synthetic null data with n′ samples and no apparent cluster structure, we generate n′ samples
Ẑ from a Normal(0, R̃(δ∗) distribution, and transform them back into the original space by the standard
normal CDF and the inverse CDF of Dj(ϕj):

X̂·,j = D̂−1
j (Φ(Ẑ·,j)) ∈ N

n′×p
0 (8)

Using this procedure, we can obtain a synthetic null dataset with marginal distributions and gene-
gene correlations similar to the target data, but no cluster structure. To allow for generation of negative
control data that has the same numbers of cells in both groups as the original data, we set n′ = 2n and
subset X̂ after processing. Analogous to ClusterDE, we process the synthetic null data in the same way
as the original data. We use the same parameters for dimension reduction and neighborhood embedding
as determined for the target data, but re-run sctransform on the null data to get new estimates for the
gene-wise overdispersion θ. By finding a suitable resolution for the Leiden algorithm, we cluster X̂ into
exactly two parts, and randomly draw nC and nC̄ cells from both clusters, respectively (Figure B3E).

FDR control in ClusterDE and BacSC is performed through contrast scores and the Clipper method
[35]. We first obtain two sets of n p-values by performing the same DE test (e.g. Wilcoxon rank-sum) on
the original data and on the drawn subset of the synthetic null data (Figure B3F, G). Next, we calculate
the contrast score
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Γi = (−log10(pdata,i)− (−log10(pnull,i))) (9)

for each pair of p-values. Given a FDR level α, Clipper then finds a threshold T on the contrast scores

T = min

{

0 < t < max(Γ) :
|{i : Γi ≤ −t}|+ 1

|{i : Γi ≥ t}| ∨ 1
≤ α

}

(10)

For genes with Γi > T , the expected FDR is less than α [34] and we denote them as differentially
expressed (Figure B3H).

While differential expression testing with contrast scores is not computationally intensive, the gen-
eration of synthetic null data does require some computational power. Fortunately, a series of tests of
each cell type’s gene expression against the union of all other cell types only requires generation of the
synthetic null data once, as the same set of cells is included in every test and therefore marginal gene
distributions and correlations are identical. Only the selection of nC and nC̄ cells from X̂ and subsequent
steps have to be performed individually for each cell type.
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Appendix A Additional dataset analysis

This section contains biological interpretation of selected datasets that were not discussed in the main
text.

A.1 BacSC reveals effects of DNA damage in B.subtilis

One more impression on how external factors can change the composition of bacterial cell types is pro-
vided by the Bsub damage PB dataset by comparing this data to the same species grown in minimal
media without DNA damage. First, the PCA plot of the DNA-damaged population did not exhibit the
characteristic separation into three subpopulations as observed in the Bsub minmed PB dataset (Figure
C10A). Instead, the UMAP embedding showed a much more homogeneous population structure C10B)
with six different subclusters, and one separate cell type (cluster 6).

This cell type again contained competent cells, as indicated by an overexpression of com genes
(FDR=0.1, Figure C10E, F, Table E10) although in a much lower concentration than in the experiment
without DNA damage (0.9% vs. 9.4% of analyzed population). For cell types 1 and 2, BacSC found many
genes to be up- or downregulated, respectively, at an FDR level of 0.1. Cell type 4 showed an overex-
pression of genes related to subtilosin A production (albE, albF, albC, albA, albD), while cell types 3
and 5 showed an overexpression of genes related to the SPbeta prophage (yomS, yomP, yomR, ...), and
prophage PBSX (xtmA, xtmB, xkdE, xkdC, etc.), albeit only at FDR levels larger than 0.5.

A.2 BacSC discovers a new cell type in K. pneumoniae

The Klebs untreated BD data contains 48,511 cells after quality control and is thus the largest experiment
of our analyzed datasets, but also one of the most sparse (99.1% zero entries, Table E1). The PCA plot
generated by BacSC (Figure C12A) showed a separation of many cells that were later clustered as cell
type 1 (Figure C12B). This cell type showed higher sequencing depth (Figure C12D) and a larger number
of unique expressed genes per cell on average (Figure C12C).

Clustering revealed three distinct subpopulations (Figure C12B). Cell type 1 showed a distinct set of
genes that were upregulated at an FDR of 0.05 (Figure C12E, G; Table E12). This cell type comprised
2,194 cells and was characterized by IS903B transposase genes (RS22855, Figure C12F). This MGE
subpopulation was already described in the original publication, but separated more clearly from the rest
of the population in the UMAP generated by BacSC (Figure C12B).

Cell type 0 made up the bulk of the cell population (44,236 cells) and was distinguished from the other
cell types by no expression of IS903B transposase genes. The analysis with BacSC also found another
cell type (Cluster 2), which was not described by [13]. Similar to the high-ribosomal cell type discovered
in P. aeruginosa, this subpopulation was mostly characterized by a higher expression of ribosomal genes
(rplP, rplC, rpoC ).
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Appendix D Diagnostic plots for all datasets

This section contains a selection of diagnostic plots from BacSC for each dataset from table 1.
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Appendix E Supplementary tables
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Dataset Cells Genes Minimum
seq. depth

Maximum
seq. depth

Median seq.
depth

Zero counts
(percentage)

Maximum
count

95% quantile 99% quantile

Pseudomonas balanced PB 1544 5553 413 5704 794.5 0.862 136.0 1.0 3.0

Pseudomonas li PB 1255 5540 360 4464 647.0 0.881 80.0 1.0 2.0

Ecoli balanced PB 3386 3968 103 495 163.0 0.963 14.0 0.0 1.0

Bsub minmed PB 2784 2952 141 1289 325.0 0.911 45.0 1.0 2.0

Bsub damage PB 13801 2959 268 1839 555.0 0.861 110.0 1.0 3.0

Bsub MPA PB 6703 2937 136 948 267.0 0.940 105.0 1.0 2.0

Klebs anitbiotics BD 19638 2500 14 275 21.0 0.992 13.0 0.0 0.0

Klebs untreated BD 48511 2500 12 728 21.0 0.991 30.0 0.0 0.0

Klebs BIDMC35 BD 9168 2500 15 371 45.0 0.990 26.0 0.0 0.0

Klebs 4species BD 315 1265 9 196 19.0 0.978 10.0 0.0 1.0

Ecoli 4species BD 983 1301 10 556 21.0 0.981 35.0 0.0 1.0

Pseudomonas 4species BD 103 628 8 137 18.0 0.953 7.0 0.0 1.0

Efaecium 4species BD 2113 1606 12 289 22.0 0.985 19.0 0.0 1.0

Table E1 Dimensionality and summary statistics of datasets after quality control with BacSC. If not stated otherwise, statistics are in terms of counts/absolute values.
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Dataset Minimum
sequencing
depth

Minimum cells
per gene

Median abso-
lute deviation
cutoff (nmads)

Number of
removed bar-
codes

Data distribu-
tion

Latent dimen-
sion (kopt)

n neighbors min dist clustering reso-
lution

Pseudomonas balanced PB - 2 5 108 NB 3 150 0.30 0.15

Pseudomonas li PB - 2 5 71 NB 3 50 0.30 0.13

Ecoli balanced PB 100 2 5 1376 Poi 2 50 0.05 0.07

Bsub minmed PB 100 2 5 0 Poi 4 20 0.50 0.15

Bsub damage PB 100 2 5 61 Poi 8 150 0.30 0.37

Bsub sporulation PB 50 2 30 10204 Poi 4 250 0.30 0.29

Bsub MPA PB 100 2 10 197 Poi 2 10 0.05 0.03

Klebs anitbiotics BD 15 2 15 1214846 Poi 5 150 0.10 0.17

Klebs untreated BD 15 2 15 409547 Poi 3 70 0.05 0.01

Klebs BIDMC35 BD 15 2 5 768 Poi 3 15 0.10 0.09

Klebs 4species BD 15 2 10 8335 Poi 4 10 0.70 0.21

Ecoli 4species BD 15 2 10 8671 NB 7 25 0.50 0.25

Pseudomonas 4species BD 15 2 10 8089 Poi 1 15 0.05 0.15

Efaecium 4species BD 15 2 10 7862 Poi 3 25 0.05 0.09

Table E2 Overview over filtering thresholds used for quality control, number of removed barcodes, and hyperparameters determined during the course of BacSC in each dataset. Both P.aeruginosa

datasets generated with ProBac-seq were already quality-controlled in CellRanger and therefore needed no further cell filtering for minimal sequencing depth. The ”Data distribution” column denotes
the data distribution determined for count splitting (see Methods). ”NB” stands for the Negative Binomial distribution, ”Poi” denotes the Poisson distribution.
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Gene Symbol Name PGFam Rank
(Wilcoxon
test)

PA4514 NaN iron transport outer membrane recep-
tor

NaN 1

PA4370 icmP insulin-cleaving metalloproteinase
outer membrane protein

NaN 2

PA4515 NaN hydroxylase NaN 4

PA5531 tonB1 transporter TonB NaN 6

PA4709 NaN hemin degrading factor NaN 9

PA4710 phuR heme/hemoglobin uptake outer mem-
brane receptor PhuR

NaN 10

PA4516 NaN hypothetical protein NaN 11

PA4707 NaN ABC transporter permease NaN 13

PA0472 NaN RNA polymerase sigma factor RNA polymerase ECF-type sigma fac-
tor

14

PA0672 hemO heme oxygenase Heme oxygenase HemO, associated
with heme uptake

16

PA2468 foxI ECF sigma factor FoxI FIG006045: Sigma factor, ECF sub-
family

17

PA2426 pvdS extracytoplasmic-function sigma-70
factor

Sigma factor PvdS, controling
pyoverdin biosynthesis

18

PA4371 NaN hypothetical protein NaN 19

PA4513 NaN oxidoreductase NaN 20

PA0929 NaN two-component response regulator Two-component transcriptional
response regulator, LuxR family

21

PA2467 foxR anti-sigma factor FoxR Iron siderophore sensor protein 24

PA4468 sodM superoxide dismutase NaN 26

PA3530 NaN hypothetical protein NaN 28

PA0931 pirA outer membrane receptor FepA TonB-dependent receptor; Outer
membrane receptor for ferric enter-
obactin and colicins B, D

31

PA5217 NaN iron ABC transporter substrate-
binding protein

NaN 34

PA3899 NaN RNA polymerase sigma factor NaN 36

PA4470 fumC1 fumarate hydratase NaN 39

PA4708 phuT heme-transporter PhuT NaN 40

PA4227 pchR transcriptional regulator PchR NaN 42

PA1911 femR sigma factor regulator FemR Iron siderophore sensor protein 43

PA4168 fpvB second ferric pyoverdine receptor FpvB NaN 45

PA0930 NaN two-component sensor two-component sensor 55

PA1912 femI ECF sigma factor FemI FIG006045: Sigma factor, ECF sub-
family

59

PA3900 NaN transmembrane sensor NaN 71

PA1300 NaN ECF subfamily sigma-70 factor FIG006045: Sigma factor, ECF sub-
family

73

PA0471 NaN transmembrane sensor Putative transmembrane sensor 79

PA4706 NaN hemin importer ATP-binding subunit NaN 81

PA2033 NaN hypothetical protein Siderophore-interacting protein 86

PA1365 NaN siderophore receptor Ferrichrome-iron receptor @ Iron
siderophore receptor protein

99

PA4471 NaN hypothetical protein NaN 105

PA4705 NaN hypothetical protein NaN 108

PA1802 clpX ATP-dependent protease ATP-binding
subunit ClpX

ATP-dependent Clp protease ATP-
binding subunit ClpX

113

PA1301 NaN transmembrane sensor Iron siderophore sensor protein 137

PA4467 NaN hypothetical protein NaN 153

PA0800 NaN hypothetical protein FIG024006: iron uptake protein 154

PA4469 NaN hypothetical protein NaN 155

PA5148 NaN hypothetical protein NaN 158

Table E3 Description of genes and rank of p-value from DE testing balanced growth versus low-iron in the combined
Pseudomonas balanced PB and Pseudomonas li PB dataset. Only genes that are DE in the Copathogenex dataset for at least one of the
three DE tests performed on that data are shown
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 1219 0.059649 0 1804 2195

1 897 0.148019 0 0 1517

2 386 0.257908 0 0 0

3 262 0.027027 47 50 50

4 20 0.035714 28 34 62

Table E4 Description of clusters for the Bsub minmed PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 7954 0.076923 0 13 25

1 5960 0.102564 0 0 111

2 3262 0.052632 0 62 667

3 1843 0.016129 96 122 673

4 255 0.111111 0 0 41

5 223 0.029412 69 83 113

6 74 0.016667 102 121 160

7 67 0.012987 102 118 133

Table E5 Description of clusters for the Klebs antibiotics BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 571 0.273290 0 0 0

1 484 0.020833 51 71 81

2 415 0.028825 5056 5209 5209

3 74 0.045455 22 23 27

Table E6 Description of clusters for the Pseudomonas balanced PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 516 0.014925 82 4462 4850

1 446 0.798621 0 0 0

2 239 0.030303 5105 5210 5210

3 54 0.029412 34 35 36

Table E7 Description of clusters for the Pseudomonas li PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 777 0.041667 24 31 44

1 773 1.000000 0 0 0

2 576 0.025000 43 54 66

3 396 0.120000 0 0 34

4 194 0.025000 50 66 71

5 124 0.029412 34 36 36

Table E8 Description of clusters for the combined Pseudomonas balanced PB and Pseudomonas li PB dataset. The
table shows number of cells, minimal FDR (q value) over all genes, and number of differentially expressed genes at three
different FDR levels.
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 1132 0.416667 0 0 0

1 796 0.006452 1423 1821 2374

2 729 1.000000 0 0 0

3 729 0.055556 0 281 562

Table E9 Description of clusters for the Ecoli balanced PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 5166 0.263282 0 0 0

1 3734 0.086339 0 2694 2694

2 3246 0.083924 0 2049 2467

3 576 1.000000 0 0 0

4 526 0.778626 0 0 0

5 422 0.500000 0 0 0

6 131 0.100000 0 0 11

Table E10 Description of clusters for the Bsub damage PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 2275 0.388889 0 0 0

1 1940 0.019231 66 245 649

2 1602 0.008163 926 1634 2158

3 886 0.200000 0 0 0

Table E11 Description of clusters for the Bsub MPA PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 44236 0.007299 148 161 362

1 2194 0.005988 324 412 676

2 2081 0.095238 0 21 21

Table E12 Description of clusters for the Klebs untreated BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 2504 0.050000 0 20 26

1 1892 1.000000 0 0 0

2 1807 0.125000 0 0 8

3 1589 0.066667 0 15 86

4 914 0.008696 1047 1237 1561

5 255 0.142857 0 0 41

6 207 0.142857 0 0 7

Table E13 Description of clusters for the Klebs BIDMC35 BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 137 0.071429 0 14 53

1 96 0.019608 62 86 111

2 42 0.041667 24 31 36

3 26 0.333333 0 0 0

4 14 0.062500 0 29 30

Table E14 Description of clusters for the Klebs 4species PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 592 0.258621 0 0 0

1 107 0.062500 0 97 148

2 83 0.030303 33 41 82

3 56 0.040000 43 72 84

4 33 0.025641 39 58 69

5 30 0.018519 56 62 72

6 29 0.021277 52 54 63

7 28 0.027027 37 37 53

8 25 0.043478 43 47 53

Table E15 Description of clusters for the Ecoli 4species PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 42 0.206897 0 0 0

1 32 1.000000 0 0 0

2 29 0.043478 23 65 144

Table E16 Description of clusters for the Pseudomonas 4species PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 943 0.755102 0 0 0

1 589 1.000000 0 0 0

2 488 0.571429 0 0 0

3 36 0.018868 63 73 99

4 33 0.022727 48 53 89

5 24 0.100000 0 0 11

Table E17 Description of clusters for the Efaecium 4species PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.
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