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Abstract

Recent advances in single-cell technologies have enabled high-
throughput molecular profiling of cells across modalities and locations. 
Single-cell transcriptomics data can now be complemented by chro-
matin accessibility, surface protein expression, adaptive immune 
receptor repertoire profiling and spatial information. The increasing 
availability of single-cell data across modalities has motivated the 
development of novel computational methods to help analysts 
derive biological insights. As the field grows, it becomes increasingly 
difficult to navigate the vast landscape of tools and analysis steps. 
Here, we summarize independent benchmarking studies of unimodal 
and multimodal single-cell analysis across modalities to suggest 
comprehensive best-practice workflows for the most common analysis 
steps. Where independent benchmarks are not available, we review 
and contrast popular methods. Our article serves as an entry point 
for novices in the field of single-cell (multi-)omic analysis and guides 
advanced users to the most recent best practices.
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From raw count matrices to high-quality cellular data
Advances in scRNA-seq led to high-quality runs with high throughputs. 
However, scRNA-seq data sets contain systematic and random noise 
(such as from poor-quality cells) that obscures the biological signal. Pre-
processing of scRNA-seq data attempts to remove these confounding 
sources of variation. This involves quality control, normalization, data 
correction and feature selection (Fig. 2a).

Filtering low-quality cells and noise correction. Most analysis tasks 
assume that each droplet contains RNA from an intact single cell. This 
assumption is commonly violated through low-quality cells, contami-
nation from cell-free RNA or the capture of multiple cells (Fig. 2a). Cells 
with a low number of detected genes, a low count depth and a high 
fraction of mitochondrial counts are typically termed low-quality cells 
as they can represent dying cells with broken membranes. Low-quality 
cells are identified and filtered by manually setting thresholds as rec-
ommended in a previous guide5 or sample-wise automatic filtering 
based on the number of median absolute deviations20. These metrics 
are considered jointly to prevent the misinterpretation of cellular 
signals5. Quality control is performed at the sample level as thresholds 
can vary substantially between samples.

Cell-free RNA can be present in the cell solution and will be 
assigned to a cell’s native RNA during library construction. Ambient 
RNA contamination can lead to cell-type-specific marker gene tran-
scripts being detectable also in other cell populations, which can blend 
different cell populations together21. Popular methods such as SoupX 
estimate the cell-specific contamination fraction on the basis of the 
expression profiles of otherwise ‘empty’ droplets and cell clusters in 
the data set21. CellBender formulates the removal of ambient RNA as 
an unsupervised Bayesian model that requires no prior knowledge of 
cell-type-specific gene expression profiles22. Even in the absence of a 
systematic benchmark, one should consider removing ambient RNA 
as an initial analysis step in quality control to improve downstream 
analyses for many tissues21–23.

Empty droplets and doublets (droplets containing two cells) 
violate the assumption that each droplet contains a single cell. Dou-
blets formed by different cell types (heterotypic doublets) are hard 
to annotate and can lead to wrong cell-type labels. Common doublet 
detection methods generate artificial doublets by combining two 
randomly sampled cells and comparing them against measured cells. 
scDblFinder24 leverages this idea and can additionally be combined with 
prior knowledge on known doublets. Several benchmarks have high-
lighted that scDblFinder outperforms other methods in terms of dou-
blet detection accuracy and computational efficiency25–27. Additionally, 
it can be beneficial to apply multiple doublet detection methods and 
compare the results to increase the accuracy of doublet detection27.

The selected quality control strategy often needs to be reassessed 
during downstream analysis when low-quality cells and doublets clus-
ter together. We therefore recommend setting permissive thresholds 
initially and potentially removing more cells as necessary during (re-)
analysis.

Normalization and variance stabilization. Cells can have different 
numbers of gene counts owing to differences in mRNA-containing vol-
ume (cell size) or purely randomly during sequencing. Count normaliza-
tion makes cellular profiles comparable. Subsequent variance 
stabilization ensures that outlier profiles have limited effect on the 
overall data structure28 (Fig. 2a). A recent benchmark compared 22 trans-
formations for single-cell data based on the K nearest-neighbours graph 

Introduction
Single-cell RNA sequencing (scRNA-seq) technologies have revolution-
ized molecular biology by enabling the measurement of transcrip-
tome profiles at unprecedented scale and resolution. Advancements 
in experimental technology have motivated large-scale innovation in 
computational methods, leading to more than 1,400 tools currently 
being available to analyse scRNA-seq data1. Computational frameworks 
and software repositories, such as Bioconductor2, Seurat3 and Scanpy4, 
complemented by method benchmarks and best-practice workflows2,5,6 
have allowed data analysts to navigate this space and build analysis 
pipelines. This interplay of experimental and computational innova-
tion has enabled biological landmark discoveries that uncover tissue 
cellular heterogeneity7,8.

However, scRNA-seq captures only one layer of the complex regu-
latory machinery that governs cellular function and signalling. To 
complement this, considerable efforts have been made to measure 
other modalities at single-cell resolution, including chromatin acces-
sibility9, surface proteins10, T cell receptor (TCR)/B cell receptor (BCR) 
repertoires11 and spatial location12, enabling findings such as type 2 
diabetes mellitus regulatory signatures13, dysregulated response of the 
innate14 and adaptive15 immune system against severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) and better understanding 
of immunosuppressive effects of the tumour microenvironment at 
spatial resolution16. Experimental innovation has led to the develop-
ment of many new computational tools for various single-cell omic 
modalities, yet a lack of best-practice workflows makes navigation 
of the vast landscape of novel tools challenging. Moreover, although 
computational best practices and tool recommendations have previ-
ously been outlined for scRNA-seq2,5,6,17, they are either outdated or 
incomplete.

Here, we guide the reader through the various steps of unimodal 
as well as multimodal single-cell data analysis and discuss analysis 
pitfalls and recommendations (Fig. 1). Where best practices cannot 
be determined owing to the novelty of tools or lack of independent 
benchmarks, we list popular tools and community recommenda-
tions. We organize the article into modality-specific sections and 
groups of analysis steps instead of a single workflow, which in mod-
ern single-cell analysis rarely exists anymore owing to the diversity of 
tasks. For further reading, we provide a more extensive and regularly 
updated (but not peer-reviewed) Single-Cell Best Practices online 
book with more than 50 chapters including detailed code exam-
ples, analysis templates as well as an assessment of computational  
requirements.

Transcriptome
scRNA-seq measures the abundance of mRNA molecules per cell. 
Extracted biological tissue samples constitute the input for single-
cell experiments. Tissues are digested during single-cell dissociation, 
followed by single-cell isolation to profile the mRNA per cell separately. 
Plate-based protocols isolate cells into wells on a plate, whereas droplet-
based methods capture cells in microfluidic droplets18. In this article, 
we focus on droplet-based assays owing to their popularity.

The obtained mRNA sequence reads are mapped to genes and 
cells of origin in raw data processing pipelines that use either cellu-
lar barcodes or unique molecular identifiers (UMIs) and a reference 
genome to produce a count matrix of cells by genes (Fig. 2a). For a 
detailed comparison of various raw data processing tools, we refer to 
Lafzi et al.19 and consider count matrices as the starting point for our 
analysis workflow of unimodal scRNA-seq data.

https://sc-best-practices.org
https://sc-best-practices.org
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(KNN graph) overlap with the ground truth29. The shifted logarithm 
transformation  log( + 1)

y
s  with size factor s performs well but should not 

be used with counts per million as an input, as it reflects an unrealistically 
large overdispersion. By scaling all genes by a common factor, one 
assumes that differences in count depth due to cell size are negligible. 
However, for heterogeneous scRNA-seq data sets, defining a per-gene 
statistic might not be accurate if the data set is composed of various 
different cell types with non-identical cell properties. Scran30 normaliza-
tion aims to minimize this issue by pooling cells with similar count depth 
and estimating pool-based size factors using a linear regression over 
genes. An approach that was shown to perform similarly well in the 
aforementioned benchmark29 is the analytical approximation of Pearson 
residuals, which fits a generalized linear model with sequencing depth 
as a covariate to obtain transformed count matrices31. We agree with 
previous studies that the normalization method should be chosen care-
fully and based on the subsequent analysis task5,32,33. The shifted loga-
rithm was shown to work better for stabilizing variance for subsequent 
dimensionality reduction33, Scran performs well for batch correction 
tasks34,35, and analytical Pearson residuals are better suited for selection 
of biologically variable genes and identification of rare cell identities31.

Removing confounding sources of variation. Confounding sources 
of variation can be separated into technical as well as biological covari-
ates and should be treated separately as they describe different effects 
and challenges.

Data sets that contain multiple samples may be confounded 
by batch effects that reflect technical variation. Batch effects can be 
observable after clustering and visualization and should be removed 
to ensure that they are not mistaken as actual biological insight5. Data 
integration methods address batch effects between samples in the same 
experimental setting. A recent benchmark compared 16 integration 
methods based on 14 metrics on the basis of batch correction as well as 
biological variance conservation35. Linear-embedding models such 
as canonical correlation analysis36 and Harmony37 were shown to per-
form well for batch correction on simpler integration tasks with distinct 
batch structures38,39. scANVI40 can incorporate the cell-type labels, which 
is favourable as it can help to conserve biological variation35. Depending 
on the complexity of the integration tasks, such as atlas integration, 
deep-learning approaches such as scANVI40, scVI41 and scGen42 as well 
as linear-embedding models such as Scanorama43 performed best, 
whereas for less complex integration tasks, Harmony37 is the preferred 
method35. The package scIB can be used to evaluate the integration using 
the aforementioned benchmark’s evaluation metrics35.

Besides count sampling effects, scRNA-seq data may contain bio-
logical confounding factors such as cell cycle effects, whereby differ-
ences between cells might be due to different cell cycle states rather than 
cell types44. Removing such effects from the data set can be favourable 
for downstream analysis; however, knowing whether cells are cycling 
may provide valuable insights into the underlying biology5. A recent 
benchmark44 recommends using the built-in cell cycle labelling and cor-
rection functions in Scanpy4 or Seurat45 as a baseline, which compare the 
mean expression values to a reference signature. Subsequently, a more 
complex method such as Tricycle46 should be applied, which maps the 
data set to an embedding that represents the cell cycle46. Tricycle was 
shown to perform well for data sets with high cell-type heterogeneity44.

Selecting informative features and reducing dimensionality. 
To ensure that analysis focuses only on biologically meaningful genes 
and to deal with large data sets, the count matrix can be reduced to the 

most informative features. Feature selection methods should ideally 
select genes that explain the biological variation in a data set by pri-
oritizing those that vary between subpopulations rather than within 
one subpopulation, without affecting the identifiability of small sub-
populations20. Deviance identifies highly informative genes by fitting a 
gene-wise model that assumes constant expression across all cells and 
quantifying which genes violate this assumption47. It performed favour-
ably for identifying genes with high variance across subpopulations 
and thus for selecting informative genes, as shown in an independent 
comparison20. Additionally, ranking genes by deviance is performed 
on raw counts and is therefore not sensitive to normalization. After 
feature selection, the dimensions of the data set can be further reduced 
by dimensionality reduction algorithms such as principal component 
analysis (PCA) (Fig. 2a). Dimensionality reduction techniques can be 
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Fig. 1 | Single-cell analysis across modalities. Cellular state is characterized by 
various modalities, including, but not limited to, RNA transcription, chromatin 
accessibility, surface proteins including T cell receptors (TCRs) and B cell receptors 
(BCRs), as well as spatial location. Various frameworks covering the most important 
analysis steps have been developed. Transcriptomics data can be analysed with 
Scanpy4, Seurat36 and Bioconductor-based SingleCellExperiment2; chromatin  
accessibility measurements with muon150, ArchR140, snapATAC135 and Signac143;  
TCR and BCR repertoire analysis with Scirpy164, Dandelion14 and scRepertoire166; 
surface protein expression with muon150, Seurat36 and CiteFuse163; spatially resolved 
single-cell data sets with frameworks such as Squidpy209, Seurat36, Giotto244 and 
Bioconductor-based SpatialExperiment211. These frameworks are complemented 
with a myriad of additional tools for specific subsequent analysis tasks.
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used for either visualization or summarization of the underlying data 
topology. On the basis of other studies, PCA can be used for data sum-
marization and t-SNE, UMAP and PHATE for more flexible visualization 
of scRNA-seq data5,48. Notably, a recent study showed that relying only 
on 2D embeddings can lead to misinterpretation of the relationships 
between cells, and results should not be formulated only on the basis 
of visual inspection of these representations, but should be combined 
with quantitative assessments49.

From clusters to cell identities
After preprocessing, unwanted effects have been removed from the 
data set and the signal-to-noise ratio improved. Thus, one can now start 
asking biologically relevant questions. As a next analysis milestone, 
different cellular populations can be identified to further guide and 
structure the analysis (Fig. 2b).

From single cells to clusters. The first step towards identifying cel-
lular populations is to cluster cells into groups with similar expres-
sion profiles that explain the heterogeneity in the data. Independent 
benchmarks5,50,51 showed that community detection based on graph 
modularity optimization via the Louvain algorithm works best for 
cluster identification. However, the Louvain algorithm can lead to arbi-
trarily poorly connected communities52. Louvain’s successor Leiden 
circumvents this issue by yielding guaranteed connected communities 
and is computationally more efficient52. Both methods are applied to 
the KNN graph computed on a low-dimensional representation of the 
data and can be run at different resolutions to control the number 
of identified clusters. We recommend using the Leiden algorithm at 
different resolutions to obtain an ideal clustering for annotating cells5.

Mapping cell clusters to cell identities. Annotation is the process of 
giving detected cell clusters a biological interpretation such as cell type 
(Fig. 2b). It can be performed with manual or automatic approaches. 
A three-step approach is recommended that leverages automated 
annotation, followed by expert manual annotation and a last step of  
verification to obtain the ideal annotation result53. The first step, 
automated cell-type annotation, can be separated into classifier-
based methods and reference mapping. Annotation results obtained 
with pre-trained classifiers are strongly affected by the classifier type 
and the quality of the training data used to create the classifier54,55. 

Furthermore, it can be difficult to assess the resulting annotation with-
out additionally inspecting individual markers. Examples of classifiers 
that are trained on previously annotated data sets or atlases and that 
consider a large set of genes are CellTypist56 and Clustifyr57. The second 
group of automated annotation approaches is mapping to existing, 
annotated single-cell references and performing label transfer on 
the resulting joint embedding. References can be either individual 
samples of the data set or, ideally, well-curated existing atlases. Query-
to-reference mapping can then be performed with methods such 
as scArches58, Symphony59 or Azimuth3. Similar to classifier-based 
approaches, the quality of the transferred annotations depends on the 
quality of the reference data, the model and the suitability to the data 
set. The second step, manual annotation, leverages gene signatures 
of each cluster to annotate cell clusters. These gene signatures are 
commonly known as marker genes and can be identified using simple 
differential expression testing approaches such as t-tests or Wilcoxon 
rank-sum tests. The statistical test is applied to two groups of clusters 
to find genes that are upregulated or downregulated in a cluster of 
interest. For this purpose, Wilcoxon rank-sum tests performed best, 
but owing to the nature of clustering, P values can be inflated and 
might lead to false discoveries, as the same data are used to define the 
labels that we test for differences between60,61. The obtained markers 
are then compared with marker genes from well-annotated refer-
ences to annotate cell clusters. As a last step, the annotation should 
be verified by experts, especially for data sets with high complexity 
or studies that involve rare cell subpopulations for which references 
might not be available53.

From discrete states to continuous processes. In non-stationary, 
biological processes such as differentiation, cells traverse a con-
tinuous space of cellular states. Using single-cell data to understand 
cell fate — and genes regulating it in this landscape — is challenging as 
measurements are only snapshots. The underlying trajectories can be 
cyclic, linear, a tree or, most generally, a graph. Models that order cells 
along a trajectory based on similarities in their expression patterns 
are known as trajectory inference or pseudotime analysis methods. 
The performance of trajectory inference approaches depends on the 
type of trajectory present in the data set. Although Slingshot62 per-
formed better for simple topologies, PAGA63 and RaceID/StemID64 
scored better for complex trajectories65. We therefore recommend using 

Fig. 2 | Overview of unimodal analysis steps for scRNA-seq. a, Count matrices 
of cells by genes are obtained from raw data processing pipelines. To ensure 
that only high-quality cells are captured, count matrices are corrected 
for cell-free ambient RNA and filtered for doublets and low-quality or dying 
cells. The latter is done by removing outliers with respect to quality control 
metrics (the number of counts per barcode, called count depth or library size, 
the number of genes per barcode and the fraction of counts from mitochondrial 
genes per barcode (percentage  mito.)). All counts represent successful capture, 
reverse transcription and sequencing of an mRNA molecule. These steps vary 
across cells, and therefore count depths for identical cells can differ. Hence, 
when comparing gene expression between cells, differences may originate solely 
from sampling effects. This is addressed by normalization to obtain correct 
relative gene abundances between cells. Single-cell RNA sequencing (scRNA-seq) 
data sets can contain counts for up to 30,000 genes for humans. However, most 
genes are not informative, with many genes having no observed expression. 
Therefore, the most variably expressed genes are selected. Different batches 
of data are integrated to obtain a corrected data matrix across samples. To ease 

computational burden and to reduce noise, dimensionality reduction techniques 
are commonly applied. This further allows for the low-dimensional embedding 
of the transcriptomics data for visualization purposes. b, The corrected space 
can then be organized into clusters, which represent groups of cells with similar 
gene expression profiles, annotated by labels of interest such as cell type. 
The annotation can be conducted manually using prior knowledge or with 
automatic annotation approaches. Continuous processes, such as transitions 
between cell identities during differentiation or reprogramming, can be inferred 
to describe cellular diversity that does not fit into discrete classes. c, Depending 
on the question of interest and experimental set-up, conditions in the data set 
can be tested for upregulated or downregulated genes (differential expression 
analysis), effects on pathways (gene set enrichment) and changes in cell-type 
composition. Perturbation modelling enables the assessment of the effect 
of induced perturbations and the prediction of unmeasured perturbations. 
Expression patterns of ligands and receptors can reveal altered cell–cell 
communication. Transcriptomics data further enable the recovery of gene 
regulatory networks. q, q value.
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dynguidelines to select an applicable method65. When the expected 
topology is unknown, trajectories and downstream hypotheses should 
be confirmed by multiple trajectory inference methods using different 
underlying assumptions. Inferred trajectories might not necessarily 
have biological meaning5. Incorporating more complex methods and 
sources of information through, for example, RNA velocity measure-
ments, can be beneficial to recover further evidence of actual biological 
processes.

To infer dynamic, directed information, velocyto66 and scVelo67 
model splicing kinetics using unspliced and spliced reads to infer 
RNA velocity: if a gene is being activated, unspliced RNA precedes the 
spliced RNA, which can be visualized in the phase portrait67. Obtained 
RNA velocity fields serve as input for CellRank68 to estimate cellular 
fates. RNA velocity inference assumes gene independence and constant 
rates of transcription, splicing and degradation. Under the assumption 
of constant rates, phase portraits form an almond shape with induction 
(upper half/arc) and repression (lower half/arc) phases. We therefore 
recommend checking whether the model assumptions hold by exam-
ining phase portraits of genes with high likelihoods determined by 
the dynamic model of scVelo. If phase portraits lack the expected 
shape, RNA velocity may be inferred incorrectly. Moreover, if a gene 
includes multiple, pronounced kinetics, lineage-specific models are 
more appropriate69. Cases in which RNA velocity is inferred incor-
rectly include the presence of transcriptional bursts70,71. Addition-
ally, steady-state populations pose further challenges where RNA 
velocity infers erroneous directions between independent, terminal 
cell populations70,71.

Although pseudotime-based methods do not have any timescale 
limitations as long as the process is covered in sufficiently fine-grained 
steps, RNA velocity cannot cover all time scales. As it is splicing kinetics 
that are modelled, the observed process must also occur during this 
time frame70.

Retrospective experimental lineage tracing approaches use vari-
ability observed in cells, such as naturally occurring genetic mutations, 
to infer a model of their lineage, summarizing the cell division history in 
a clonal population. Analysis of lineage tracing data can be conducted 
with Cassiopeia72, which implements several reconstruction algorithms 
including classic approaches such as UPGMA73 or neighbour joining74 as 
well as newer approaches for CRISPR–Cas9 lineage tracing data. Recon-
struction performance of algorithms is difficult to assess, as they might 
highlight different parts of the lineages well75. We therefore recommend 
applying several algorithms for performance comparisons. In addition, 
dedicated tools are introduced for the analysis of more complicated 
lineage tracing studies that include time course information. Among 
them are LineageOT76, an optimal transport-based framework suitable 
for evolving CRISPR–Cas9-based settings77, and CoSpar78 for static 
barcode lineage tracing.

Revealing mechanisms
Having obtained confident annotations on high-quality data, the 
analysis space becomes diverse, and many mechanisms of interest 
can be investigated. The choice and order of the following analysis 
steps are dependent on the question of interest and experimental 
design (Fig. 2c).

Differential gene expression analysis. The negative binomially dis-
tributed scRNA-seq data can be tested for genes that are differentially 
expressed to identify marker genes or genes that are upregulated or 
downregulated in specific conditions. Differential gene expression 

(DGE) analysis is currently approached from two viewpoints. The 
sample-level view aggregates counts per sample–label combination 
to create pseudobulks, which are analysed with packages originally 
designed for bulk expression analysis, such as edgeR79, DEseq2 (ref. 80) 
or limma81. Alternatively, the cell-level view models cells individually 
using generalized mixed effect models, such as MAST82. The consensus 
and robustness between DGE tools is low83,84, but methods designed 
for bulk RNA-seq data perform favourably84–86. Single-cell-specific 
methods were found to systematically underestimate the variance of 
gene expression and to be prone to wrongly labelling highly expressed 
genes as differentially expressed86.

Current methods for DGE analysis still show a trade-off between 
true positive rate (TPR) and precision. High TPR results in low pre-
cision because of a high number of false positives, whereas high  
precision leads to low TPR owing to a lack of identified differen-
tially expressed genes83. Pseudoreplication leads to an inflated false 
discovery rate (FDR) as DGE methods do not account for the inher-
ent correlation of replicates (cells from the same individual)86–88. 
Within-sample correlation should be accounted for by aggregating 
cell-type-specific counts within an individual before DGE analysis87. 
Generally, pseudobulk methods with sum aggregation and mixed 
models such as MAST with random effect setting were found to be 
superior to naive methods, such as the popular Wilcoxon rank-sum 
test, which does not account for within-sample correlation88.

The validity of DGE results strongly depends on the capture of 
the major axis of variation in the statistical model. Intermediate data 
exploration steps, such as PCA on pseudobulk samples, help to identify 
sources of variation and thus can guide the construction of correspond-
ing design and contrast matrices for modelling the data89. Failing to 
account for multiple sources of biological variability for experiments 
will inflate the FDR90,91. We therefore recommend flexible methods 
such as limma, edgeR or DESeq2 that allow for complex experimental 
designs. P values obtained with DGE tests over conditions must be 
corrected for multiple testing5,92 to obtain q values.

Gene set enrichment analysis. The high-throughput nature of scRNA-
seq data makes them hard to interpret. Gene set enrichment analysis 
allows the summarization of many molecular insights into interpret-
able terms such as pathways, defined as gene sets known to be involved 
through previous studies. Common databases include MSigDB93, Gene 
Ontology94, KEGG95 or Reactome96. An extension to this concept are 
weighted gene sets, including PROGENy97 for signalling pathways and 
DoRothEA98 for transcription factors (TFs). Common methods for 
enrichment include hypergeometric tests, GSEA99,100 or GSVA101, which 
can be applied after DGE analysis or at the individual cell level. Gene 
set enrichment analysis was found to be more sensitive to the choice 
of gene sets rather than statistical methods102; therefore, we recom-
mend selecting the database carefully to ensure that potential gene 
sets are covered. To this end, enrichment frameworks such as decou-
pleR103 provide access to different databases and methods in a single 
tool. Enrichment methods developed for bulk transcriptomics can be 
applied to scRNA-seq102, but some single-cell-based methods, namely 
Pagoda2 (ref. 104), might outperform them105.

Deciphering changes in cell composition. Compositional analy-
sis addresses conditional changes not in the gene expression profile 
of a cell but instead in the relative abundance of different cell types 
in the form of compositional data. Changes in composition are fre-
quently observed in development106 and disease107, yet methods for 

http://guidelines.dynverse.org/
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compositional analysis lack an independent benchmark. Univariate 
statistical models, which analyse change in abundance for each cell type 
individually, such as Poisson regression or Wilcoxon rank-sum tests, 
may perceive some cell-type population shifts as statistically sound 
effects, although they are purely a statistical artefact caused by the 
compositionality of the data108, leading to an elevated FDR. Tests spe-
cifically designed for single-cell data that make use of cell-type counts 
include scDC109, scCODA108 and tascCODA, which can incorporate 
hierarchical cell-type information110.

For developmental data, sharp clustering boundaries might be 
deceptive, and determination of compositional changes based on 
known annotations may not be appropriate. DA-seq111 and MILO112 use 
KNN graphs to define subpopulations that are tested for differential 
abundance between experimental conditions. KNN-based methods 
are sensitive to a loss of information if the conditions of interest and 
confounding sources of variation are strongly correlated. Reducing 
K for the KNN graph or constructing a graph on particular lineages 
mitigates this issue112. If large differences are apparent in large clusters 
by visualization, KNN graph-based methods might be ill-suited, and a 
more direct analysis with tools that use known cell-type counts might 
be more appropriate.

Inferring perturbation effects. Advances in single-cell experimental 
protocols have enabled massively multiplexed experiments to measure 
cells under thousands of unique conditions, commonly termed ‘pertur-
bations’113. Recent technologies such as perturb-seq114 or CROP-seq115 
allow for profiling CRISPR–Cas9 screens with multimodal readouts116, 
genome-wide perturbations117 and combinatorial perturbations118. Ana-
lysing these complex conditions is known as perturbation modelling119, 
for which tools have not yet been independently benchmarked.

One area of perturbation modelling tries to differentiate suc-
cessfully from unsuccessfully targeted cells for experimental set-ups 
in which this assignment is unknown and to assess the perturbation 
effect. Mixscape116 and MUSIC120 first remove confounding sources 
of variation, then dissect successfully from unsuccessfully perturbed 
cells, to finally visualize and score perturbation effects. Augur121,122 and 
MELD123 cover only the third step and rank cell types according to the 
degree of perturbation response to identify cell populations that were 
most affected by a perturbation.

A second area of perturbation modelling concerns perturbations 
that are not experimentally measured. Latent space learning models 
such as scGen42, CPA124 and CellBox125 aim to predict responses for 
unseen perturbations, combinations or drug doses. Such models 
generally work well for highly expressed genes but may struggle with 
lowly expressed genes owing to a lack of variance.

Communication events across cells. Cells are in constant interaction 
with each other for organismal development and homeostasis. If this 
interaction is impaired, disease ensues. Cell–cell communication infer-
ence methods commonly use repositories of ligands, receptors and 
their interactions to predict interactions between annotated clusters. 
These databases were found to be biased towards specific pathways, 
functional categories and tissue-enriched proteins126. The choice of 
method and interaction database has a strong effect on the predicted 
interactions126. CellChat127 and CellPhoneDB128, which also consider 
heteromeric interaction complexes, and SingleCellSignalR129 were 
found to be robust to both data and resource noise126. Owing to the 
lack of consensus between tools, we recommend using LIANA, which 
provides an overall ranking for several combinations of method and 

database126. Moreover, tools such as Nichenet130 or Cytotalk131, which 
provide complementary estimates of intracellular activities, such as 
induced gene expression changes or spatial information, can be used 
to increase the confidence in predicted interactions.

Chromatin accessibility
Analysing regulatory elements is essential for deciphering cellular 
diversity and understanding cell decision-making. Gene expression is 
controlled by a complex interplay of regulatory mechanisms, including 
epigenetics and chromatin accessibility132. To gain insights into the 
dynamics of chromatin state at the single-cell level, single-cell assay for 
transposase-accessible chromatin sequencing (scATAC-seq) measures 
genome-wide chromatin accessibility in individual cells133,134 (Fig. 3).

Feature definition and quality control
Compared with the clearly defined gene features used for scRNA-
seq data, scATAC-seq data lack a standardized feature set due to the 
genome-wide nature of the data. Most workflows use a cell-by-peak or 
cell-by-bin matrix as a basis for analysis, which performs better than 
matrices of gene or TF motif features135 (Fig. 3a). Bins are uniformly 
sized windows across the genome that capture all Tn5 transposition 
events, whereas peaks refer to variable regions of open chromatin with 
enrichment of Tn5 transposition events over background noise. Nota-
bly, the cell-by-peak matrix is even more sparse than scRNA-seq data, 
with only 1–10% of peaks called in each cell owing to the presence of 
only two copies of assayable chromatin in cells of a diploid organism135. 
Identifying peaks requires a sufficient number of cells and therefore 
may fail in rare cell types136. The sensitivity of peak detection can be 
improved by calling them within clusters, which reduces the risk of 
missing peaks in rare cell types masked by the noise of other highly 
abundant cell types. For this approach, cell-by-bin matrices that do not 
rule out genomic regions serve as a basis for clustering136.

The most common entry point of scATAC-seq quality control is 
fragment files that contain all sequenced DNA fragments generated 
by two adjacent Tn5 transposition events. These are used to calculate 
a set of scATAC-seq-specific quality metrics to determine low-quality 
cells (Fig. 3b). Comparable to sequencing depth in scRNA-seq data, the 
total number of sequenced fragments per cell, the log total number 
of fragments and the transcription start site (TSS) enrichment score 
(a metric that captures the signal-to-noise ratio in each cell based on 
generally more open promoter regions compared with non-promoter 
regions) are examined. Low-quality cells often form a cluster combining 
low counts and low TSS enrichment scores that should be removed137. 
Additionally, the nucleosome signal is used to evaluate the fragment 
length distribution137. It is further recommended to verify the ratio 
of reads mapped to genomic regions associated with artefactual sig-
nals138. After peak calling, the number of detected features per cell is 
controlled with data set-dependent minimum thresholds. Moreover, 
low numbers of reads in peak versus non-peak regions are indicators 
for low signal-to-noise ratios similar to TSS scores9.

To score doublets, we suggest following the recommendation by 
Germain et al.24 to use two orthogonal methods specifically designed 
for scATAC-seq data and consider both scores in downstream analy-
sis. The first method is an adjustment of scDblFinder that reduces 
correlated features into a small set to use the complete information 
while making count data more continuous24. The second, AMULET139, 
leverages the diploidy of the chromosomes and scores cells with an 
unexpectedly high number of positions with more than two counts as 
a doublet, which can further capture homotypic doublets139.
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Learning a low-dimensional representation
The sparse scATAC-seq data require normalization, analogous to scRNA-
seq. In scATAC-seq data, the most common normalization strategy is 
binarization of peaks136,140,141. However, this may also remove biologi-
cal information and therefore modelling of scATAC counts directly has 
been suggested142. Dimensionality reduction methods based on latent 
semantic indexing (ArchR140 and Signac143), latent Dirichlet allocation 
(cisTopic141) and spectral embedding (snapATAC136) were shown to per-
form best for downstream clustering and cell annotation135. Concerning 
batch correction, LIGER was shown to perform best for scATAC-seq data35. 
Recently, deep-learning models such as PeakVI144 or MultiVI145 have been 
proposed for scATAC-seq data as combined dimensionality reduction 
and batch correction methods. After a corrected low-dimensional rep-
resentation is obtained, we recommend Leiden clustering based on its 
good performance in scRNA-seq-derived representations.

Annotating cell identities based on accessible regions
Annotation of cell clusters can be performed on the basis of differen-
tially accessible regions (DARs) and gene activity scores (Fig. 3c). DARs 
can be obtained by differential testing methods similar to scRNA-seq. 
Analogous differences in sequencing depth need to be accounted for 
by treating total counts as a confounder143 or by selecting a compara-
tive group of bias-matched cells with respect to total count and poten-
tially other quality control metrics such as the TSS score140. Although 
the performance on scATAC-seq data has not been benchmarked yet, 
existing benchmarks on bulk ATAC-seq data recommend edgeR for 
the determination of DARs when sample size is limited and DESeq2 
in the case of large sample sizes146. DARs might contain informative 
sequence patterns such as known cis-regulatory elements (CREs) or can 
be linked to proximal genes, which is leveraged in functional enrich-
ment analysis tools such as GREAT147, LOLA148 or GIGGLE149. Chromatin 
accessibility of CREs associated with a gene can be summarized into an 
estimate of gene expression (gene activity scores). This can be achieved 
by summing up counts within genes and a certain distance upstream 
of the TSS136,143,150. More complex models additionally integrate signals 
from distal regions either in a weighting-by-distance scheme140 or by 
integrating co-accessibility networks151 (Fig. 3d). To guide cell-type 
annotation, simple models are often sufficient, and visualization can 
be enhanced by smoothing gene activity scores among neighbouring 
cells, which is often performed using MAGIC152.

Unravelling identities with TF motifs and footprinting
TF-motif enrichment facilitates the characterization of cell identity 
and can be conducted on a cluster level using a hypergeometric test on 

cluster-specific DARs140. To obtain enrichment scores per cell, chromVAR 
can be used to calculate the deviation of accessibility across all motif-
containing peaks per cell while correcting for the insertion bias of the Tn5 
transposase, which emerges from sequence binding preferences of the 
transposase153. The TF markers facilitate cluster annotation and represent 
top candidates for regulatory proteins determining cell state. Once TFs of 
interest have been identified, scATAC-seq data allow for additional valida-
tion of the TF impact through footprinting, which indicates whether the 
TF is binding in the given cell cluster. To perform this analysis, cluster-
wise pseudobulks are generated to reduce sparsity, and the number of  
Tn5 insertions around the motif of interest is plotted140. In the case  
of active binding of the TF in the given cell cluster, the binding site itself  
is protected from Tn5 transposition events while the nucleosomes in 
close proximity are displaced, resulting in a peak–valley–peak acces-
sibility profile. As this profile is also affected by the Tn5 insertion bias, 
current footprinting tools often correct for this bias using a k-mer model 
that estimates the bias by the number of cleavage sites within each k-mer 
relative to the number of genome-wide occurrences140,143,154.

Linking single-cell chromatin accessibility and 
transcriptomics
Assays such as the proprietary 10x Multiome, sci-CAR155 or scCAT-seq156 
allow joint profiling of gene expression and chromatin accessibility. 
Current workflows use established methods for unimodal quality con-
trol and take the intersection of high-quality cells of all modalities 
for integrative analysis136,140,143. Once high-quality cells are selected, 
a joint representation of cells capturing the variability of both modal-
ities can be learned whereby confounding sources of variation are 
removed (Box 1). As no optimal method for this integration has been 
identified, we recommend performing unimodal analysis including 
cell-type annotation first. This enables evaluation of the joint represen-
tation by comparing updated clustering results with cell-type labels of 
the unimodal analysis. A high-quality multimodal representation then 
serves as input for most unimodal analysis methods including cell-type 
annotation, differential testing and trajectory analysis.

Paired scRNA-seq and scATAC-seq data also enable the use of new 
joint methods to identify regulators of gene expression and cell states. 
To identify potential CREs, correlation-based methods are used to link 
peaks to genes within clusters of cells140,143,156. This approach can be 
extended by inferring active TFs using SCENIC followed by matching 
the corresponding motifs with peak regions to add additional interpret-
ability156. To gain insights into whether the local or global chromatin 
landscape influences the expression of a gene in a specific cell state, 
the predictability of expression based on the local neighbourhood 

Fig. 3 | Overview of scATAC-seq analysis steps. a, Single-cell assay for 
transposase-accessible chromatin sequencing (scATAC-seq) measures single-
cell chromatin accessibility. The data can be represented in several distinct 
ways. The two most common options are cell-by-peak and cell-by-bin matrices. 
Peak-calling algorithms find regions of high accessibility compared with 
background noise, whereas binning algorithms capture Tn5 transposition events 
in equally sized bins. b, To ensure that subsequent analyses focus on biologically 
meaningful features and not noise, the feature matrix is subject to quality 
control. The data need to be controlled for the total number of fragments per 
cell (representing cellular sequencing depth) and several other tests for relevant 
signal: the number of peaks with non-zero counts per cell, the transcription 
start site (TSS) enrichment score, the nucleosome signal reflecting the ratio of 
mononucleosome to nucleosome-free fragments and finally the ratio of reads in 

genomic regions that have been associated with artefactual signals. The sparsely 
distributed scATAC-seq features are then corrected through normalization. 
The subsequent preprocessing and visualization workflow closely follows the 
steps of a typical RNA analysis. c, scATAC-seq data can be annotated with cell 
types based on known differentially accessible regions, often by coupling to 
nearby or annotated coding DNA regions. The annotated cells can be leveraged 
to analyse continuous processes through trajectory inference. d, Depending 
on the question of interest, the data can now be investigated for co-accessibility 
to identify cis-regulatory interactions, differentially accessible regions to 
understand changes between conditions, transcription factor (TF) activity to 
identify key regulators and motif discovery to identify DNA sequence patterns 
serving as TF binding sites, amongst others.
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Box 1

Data integration across modalities
Holistic representations of cells can be obtained only with analyses 
across modalities245, whereby several modalities of the same cells 
are jointly examined. Although advancements in experimental 
assays allow for the paired measurements of many modality 
combinations246, different modalities are still commonly measured 
independently, resulting in unpaired data247. These data sets need 
to be properly integrated to obtain an informative low-dimensional 
embedding that can be used to visualize properties of interest.

Combining jointly measured modalities: paired integration
For paired measurements, cells serve as the integration anchor (see 
the figure, part a). Paired integration can be conducted with linear 
approaches such as factor analysis implemented in MOFA+248 to 
obtain a joint, interpretable latent space. This approach requires size 
factor normalization to ensure that the first factors are not dominated 
by differences in total expression per sample. Alternatively, weighted 
nearest-neighbour (WNN)3 analysis learns cell-specific modality 
weights that reflect the modality information content to determine 
the importance of modalities in downstream analyses in the form of 

a neighbour graph. This graph can be reused for the calculation of 
embeddings or distance metrics.

Integrating disjoint measurements: unpaired integration
The main difficulty in integrating unpaired multi-omic data 
(diagonal integration; see the figure, part b) lies in the distinct 
feature spaces. Initial approaches that map multimodal data 
into a common feature space based on prior knowledge — such 
as assay for transposase-accessible chromatin (ATAC) regions 
to nearby transcripts — with subsequent application of single-
cell data integration methods have been shown to result in 
information loss135. Nonlinear manifold alignment approaches 
such as optimal transport-based methods such as SCOT249 or 
UnionCom250 do not require prior knowledge and could therefore 
reduce the inter-modality information loss. GLUE models cell 
states as low-dimensional embeddings learned through modality-
specific variational autoencoders that use probabilistic generative 
modelling based on a guidance graph incorporating prior 
knowledge251. It has been shown to work well for the integration 
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and the genome-wide chromatin states can be compared157. Methods 
to infer gene regulatory networks leveraging both modalities, such as 
FigR154 or Pando158, are currently being developed (Fig. 3d).

Surface protein expression
Transcription and chromatin accessibility are proxies for cellular state, 
activity and regulation. The actual generated products, the proteins, 
take on either intracellular or extracellular tasks, and a subset of pro-
teins are presented on the cell surface. Surface protein expression helps 
with the identification of cell types such as haematopoietic cells of the 
immune system, the annotation of which is based on markers that are 
usually used in flow cytometry or mass cytometry experiments. They 
can be further used to validate specific genetically knocked-out genes 
using, for example, the aforementioned Mixscape pipeline. The most 
widely used protocols for combined scRNA-seq and surface protein 
profiling are CITE-seq10 and REAP-seq159, with the main difference being 
the antibody-derived tags (ADTs) that are used to quantify surface 
protein expression levels (Fig. 4a).

Correcting ADT counts
Contrary to the negative binomial distribution of gene counts, ADT 
data are less sparse. For droplet-based assays, non-zero counts are 
commonly observed for ADTs owing to ambient contamination and 
nonspecific antibody binding. Most markers exhibit a bimodal distribu-
tion with a ‘negative’ (low count) peak for nonspecific antibody binding 
and a ‘positive’ peak that resembles enrichment of cell-surface proteins 
in specific cell types160. Libraries with zero counts for all or most of the 
antibody panel should be removed; however, removing cells with a low 
total ADT count may remove cell types that do not express a specific 
set of proteins or express only a few2. CITE-seq experiments can also 
contain isotype controls, which are non-target-specific antibodies 
that are used to measure nonspecific binding per cell (such as anti-
body aggregates). Large isotype counts can be detected in outlier cells, 
which should then be removed. Owing to these considerations, careful 
evaluation of individual quality control metrics should be carried out 
in the ADT modality, and joint measurements of RNA and ADTs should 
be quality controlled separately. As antibody efficacy is variable, the 

integration of ADT data across several studies can lead to strong batch 
effects that should be corrected for160.

Accounting for ADT composition biases
Cell characteristics can lead to heterogeneous capture efficiency that 
causes cell composition biases. Only cells expressing the targeted 
proteins result in increases in the tag count, which are possibly only 
particular cell types2. This can be accounted for by normalizing using 
the centred log-ratio (CLR) transformation10 or denoised and scaled 
by background (DSB)161. DSB uses background droplets that represent 
protein background noise to correct values in cells while removing 
cell-to-cell variation by combining isotype control levels with the spe-
cific background level of the respective cell. The authors of DSB found 
that this approach removes more noise owing to the availability of the 
background distribution in the raw counts161.

Jointly analysing transcriptomics and ADT data
The unimodal downstream analysis of the ADT data follows a similar 
pipeline to unimodal RNA analysis where annotated clusters can be 
tested for differential abundance (Figs. 2b and 4b). However, ADT data 
provide the most insight when analysed jointly with other modalities 
such as transcriptomics measurements. After the respective preproc-
essing, joint embedding can be obtained with generally applicable 
multimodal integration tooling (Box 1) or the CITE-seq specific, deep-
learning-based totalVI162, which learns a joint probabilistic representa-
tion of paired measurements that also accounts for noise and technical 
biases, including batch effects per modality. An alternative approach is 
to use CiteFuse163, which normalizes ADTs using CLR and combines both 
modality matrices with a similarity network fusion algorithm. The joint 
embedding can then be clustered using Leiden and annotated based on 
differentially expressed RNA and ADT using Wilcoxon rank-sum tests by 
comparing clusters against all other clusters163 (Fig. 4c). Both modalities 
can be used for downstream tasks such as the investigation of cell–cell 
communication in which the RNA expression of the ligand cluster and 
the protein expression of the receptor cluster are considered, or RNA 
and ADT correlation analysis (Fig. 4d) using CiteFuse. The obtained 
results are visualized on the joint embedding.

of more than two modalities and is the winner of the NeurIPS 2021 
multimodal single-cell data integration challenge252.

Integrating joint and disjoint measurements: mosaic 
integration
Capture of several modalities from the same cell simultaneously 
is still challenging despite advancements in experimental assays. 
Profiling individual modalities on different populations of cells from 
the same biological sample is more common, leading to completely 
missing data matrices245. The integration of data in such set-ups is 
known as ‘mosaic integration’, for which tools recently started to 
emerge (see the figure, part c). Although totalVI and MultiVI can 
also be used for mosaic integration, they are both applicable only to 
CITE-seq and Multiome data, respectively. Alternative methods for all 
modality combinations are Stabmap253, which traverses the shortest 
path along the mosaic topology by projecting all cells onto reference 
coordinates, and Multigrate254, which leverages transfer learning to 
impute missing modalities.

Query-to-reference mapping in a multimodal scenario
A recent development in the field is the advent of multi-omic reference 
data sets and therefore the possibility for unimodal and multimodal 
queries against multimodal references (see the figure, part d). 
By applying supervised principal components analysis (PCA)255 to 
references built with WNN, single-cell RNA sequencing (scRNA-seq) 
query cells can be mapped onto multimodal references, visualized 
and annotated3. Alternatively, Multigrate learns a joint latent space 
of paired and unpaired measurements. Combined with transfer 
learning, Multigrate can map unimodal and multimodal query data 
sets to multi-omic references while imputing missing modalities254. 
The imputed modalities may pose further important sources of 
information. Bridge integration poses a third option that uses a multi-
omic data set as a molecular bridge to create a dictionary of cells that 
is used to reconstruct unimodal data sets that get transformed into 
a shared embedding256. Although flexible, a disadvantage of bridge 
integration is the requirement for the bridge data set, which may not 
always be available.

(continued from previous page)
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Adaptive immune receptor repertoires
TCRs and BCRs are transmembrane surface protein complexes that 
constitute the adaptive immune receptor repertoire (AIRR) (Fig. 5a). 
Both types of receptor detect pathogen- and tumour-specific anti-
gens, but interact in different ways. Whereas BCRs directly recognize 

soluble or membrane-bound epitopes, TCRs interact with linear pep-
tides bound to cell-surface major histocompatibility complex (MHC) 
molecules. Activated B and T cells perform various functions such as 
effector immunity, forming memory by proliferation or regulating 
further immune responses. The specificity of individual B and T cells 
is defined by the AIR sequence. To capture the vast range of antigens, 
somatic V(D)J recombination generates highly diverse AIR sequences 
across the population of B and T cells in an individual (Fig. 5a). The com-
mercial 10x Chromium Single Cell Immune Profiling and BD Rhapsody 
TCR/BCR Multiomic assays enable the generation of paired transcrip-
tomics and AIRR data. Immune receptor analysis can be conducted with 
frameworks such as scirpy164, Dandelion165 or scRepertoire166.

Decoding AIRR sequence characteristics
AIRR sequences can be deciphered with V(D)J sequencing followed 
by alignments and chain pairing (Fig. 5b). Although no benchmarks 
exist for TCR sequence reconstruction, MiXCR167 and TRUST4 (ref. 168) 
are frequently used. BALDR169, BASIC170 and BraCer171 were shown to 
robustly recover BCR sequences172 but are no longer maintained. We 
therefore encourage analysts to consider the more recent MiXCR 
and TRUST4 also for BCR sequences. Overexpressed combinations 
of V, D and J genes provide valuable information on how the various 
genes are combined to create VJ and VDJ chains. The recombination 
of V(D)J gene segments and the imprecise junction of V and J seg-
ments produce the CDR3 region in VJ and VDJ chains that is mainly 
responsible for AIR–antigen binding. Germinal B cells further gener-
ate immunoglobulin variants during somatic hypermutation, in which 
immunoglobulin genes rapidly mutate within productively rearranged 
V, D and J segments. AIRR sequence analysis (Fig. 5b) highlights pref-
erentially selected gene segments for AIR arrangements that relate to 
biological function. For spectratyping, the CDR3 length profiles are 
observed under multiple conditions, which may indicate an antigen-
specific shift in the AIRR composition. Sequence motifs reveal con-
served and differing amino acids over the CDR3 positions in clusters 
of AIRs via frequency analysis (Fig. 5c). These analyses capture protein 
sequence characteristics to infer specificity and enable AIR design. 
These approaches are available in Scirpy, Dandelion and scRepertoire.

Filtering for functional adaptive immune receptors
Not all generated AIR chains produced during allelic rearrangements 
form a functional AIR. Incomplete AIRs with cells assigned to only a VJ 
or VDJ chain are regularly detected and represent valid cells, but can-
not be used for all downstream processes that expect complete AIRs. 
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Fig. 4 | Overview of CITE-seq data processing. a, Antibody-derived tags (ADTs) 
are antibody clones with unique barcodes attached to poly(A) sequences and a PCR 
handle that is specifically amplified in subsequent library processing steps. The  
antibody binds to surface proteins, and the sequenced ADT counts represent 
the expression level of those proteins. b, Although ADT data can be unimodally 
analysed, it is rarely measured alone, but more commonly in conjunction with 
matching gene expression data. Such paired count matrices of gene expression 
and ADTs are subject to individual quality control and normalization followed 
by individual or jointly visualized embeddings. c, The annotation of CITE-seq 
data can happen at the level of either the transcriptomics data, the ADT data or 
jointly by matching clusters to both marker gene and marker ADTs. d, To learn 
about biological mechanisms, ADT data can be tested for differential abundance, 
cell–cell communication can be inferred and correlation networks of RNA and 
ADT information can be constructed. q, q value.
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Lymphocytes can express dual AIRs173 with ~10% expressing multiple 
VJ chains paired with a single VDJ chain. Lymphocytes that express 
dual VDJ chains are even more rare (1%) and should be treated with 

caution. However, cells with more than two assignments for either 
VJ or VDJ chains are always indicative of doublets. Associating the 
AIR state with chain pairing information and receptor type enables 
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Fig. 5 | Overview of the adaptive immune receptor analysis. a, Structure of T cell 
receptors (TCRs) and B cell receptors (BCRs). The diverse adaptive immune receptor 
(AIR) repertoire is generated through V(D)J recombination, whereby variable (V) 
and joining ( J) gene segments are randomly rearranged for the TCR α-chain and BCR 
light chain, and further diversity (D) regions are incorporated for the TCR β-chain 
and BCR heavy chain. b, The generated TCR/BCR raw sequencing data are first 
mapped against TCR/BCR reference sequences to obtain continuous sequences 
assembled from mapped reads (contigs). In a process known as contig alignment, 
the contigs are annotated by V(D)J gene usage and complementarity-determining 

region (CDR) 1, 2 and 3 amino acid sequences. After cell alignment, the obtained 
measurements need to be matched to ideally unique full AIR chains. Cells with multi-
ple matching AIRs, missing chains or doublets can influence downstream processing 
and should be marked. c, The investigation of over-represented V(D)J sequences 
through spectratyping, motif discovery and gene usage enables insight into pref-
erential sequence selection. d, Clonotypes can be identified to reconstruct recent 
immune responses through clonotype composition analysis and lineage reconstruc-
tion. e, The construction of clonotype similarity networks, database queries and 
epitope prediction provide insight into the targets recognized by B and T cells.
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task-specific AIR selection during downstream analysis to ensure that 
as much data as possible are used (Fig. 5b). For example, orphan VDJ 
chains can still be used for database queries based on CDR3-VDJ chains, 
but not for queries based on the full AIR. The distribution of chain 
pairings and receptor types can be visualized over groups such as 
samples or conditions, and outlier clusters with excessive quality 
issues should be removed.

Identifying and classifying clonotypes
Groups of T or B cells that are descended from the same ancestral cell 
form a clonotype and are generally in a dormant state until receiving an 
external signal or stimulation from autocrine agents. Hence, the spe-
cific cells proliferate dramatically to fulfil their respective predefined 
defence response during clonal expansion174. The persistence of clonally 
expanded T or B cells serves as a biomarker of recent immune response. 
Clonotypes can be identified by identical V gene and identical nucleic 
acid sequences for VJ and VDJ CDR3 for TCRs or based on distance as 
implemented in the analysis frameworks for lineage reconstruction of 
BCRs accounting for somatic hypermutation (Fig. 5d).

During analysis, the requirement to match V genes may be omitted, 
and cells with orphan chains may be assigned to related clonotypes. 
Owing to somatic hypermutation, B cells from clonal lineages are typi-
cally grouped with a Hamming distance-based homology of more than 
80% in their CDR3 amino acid sequence175. Public clonotypes appear 
in more than one donor and can represent shared immunological 
response. By contrast, private clonotypes represent patient-specific 
clonal responses that might be valuable for personalized medicine. 
The sample-wise abundance of clonotypes can be further used to 
compare AIRRs through Jaccard distances, diversity measurements 
or hierarchical clustering (Fig. 5d).

Determining cell specificity
The most influencing positions of the AIR–antigen interaction, 
reflecting specificity, are contained in the CDR3 of the VDJ chain and 
to a lesser degree the CDR3 in the VJ chain176. Antigen specificity in 
T cells is driven by an epitope sequence and the entire AIR–epitope 
complex. Although AIR specificity can be experimentally determined 
using barcoded antigens177,178, several approaches attempt to infer it 
computationally (Fig. 5e). First, the sequences can be queried against 
databases that contain AIR–epitope pairs from existing studies directly 
or through Scirpy or immunarch179. Commonly used databases are 
IEDB180, PIRD181, vdjDB182 (TCRs only) or SAbDab (BCRs only). Similarly 
to clonotype assignment, database queries can be conducted with vary-
ing strictness by considering either the VDJ CDR3 sequence alone, or 
additionally the VJ CDR3 sequence, which decreases the FDR. A second 

approach compares AIRs using distance metrics applied to the CDR3 
sequences directly or an embedding of the sequences, as AIRs with 
similar sequences are likely to have common specificity183. Although 
the Hamming distance is often used for BCRs because it mimics somatic 
hypermutation, specialized methods are more commonly employed 
for TCRs, such as TCRdist, which compares all CDR3 sequences of two 
TCRs via transformation cost and gap penalties184, or TCRmatch, which 
uses k-mers to compare the overlap in motifs based on their CDR3β 
sequences185. As a third strategy, recent approaches directly predict 
binding between AIRs and an epitope using machine learning tools 
such as ERGO-II176. All three approaches suffer from reliance on public 
databases that contain data primarily from commonly researched 
diseases and a lack of information on MHCs to decipher T cell antigen 
specificity.

Integrating adaptive immunoreceptors with transcriptomic 
measurements
AIRR sequencing is typically combined with other omics layers such as 
surface protein and transcriptomics measurements, enabling a detailed 
view of cell fate following infection or vaccination165. The presence of 
AIRs can guide cell-type annotation by separating immune cell clusters 
and facilitating detailed T cell annotations. For paired data (Box 1), 
phenotypic AIRR analysis can be performed on AIR conditions such as 
specificity or clonotype networks using cell-type clusters with Scirpy 
and scRepertoire. Owing to inherent structural differences of the 
modalities, novel approaches such as TESSA186, mvTCR187 or Conga188 for 
TCR data and Benisse189 for BCR data aim to integrate both modalities 
for easier joint annotations and visualizations.

Single-cell data resolved in space
Up to this point, all discussed modalities were dissociation-based single-
cell omics technologies that characterize cellular identities and tissue 
states. However, in multicellular organisms cells interact and form 
spatially structured microenvironments that can vary across samples 
and conditions. Cellular organization bridges the gap between tissue 
biology and pathology, which enables the discovery of new cellular 
functionalities and creates new computational challenges for which 
distinct analysis methods are required190–192. Spatial omics resolves 
features and cellular identities by adding two additional modalities to 
single-cell genomics: histological imaging and spatial profiling measure-
ments. Spatial localization of individual cells helps to disentangle tissue 
microenvironments and their functional dependencies. Beyond leverag-
ing the spatial coordinates of cells to generate a better understanding 
of tissue structures, one can also use the non-molecular features of the 
histological image. Adding information extracted from the imaging data 

Fig. 6 | Overview of spatial transcriptomics preprocessing and downstream 
analysis steps. a, Array-based spatial transcriptomics technologies quantify 
gene expression in predefined barcoded (BC) regions with regions spanning 
areas between 10 μm and 200 μm. BC regions contain measurements from 
multiple cells, resulting in count matrices and spatial coordinates where each 
observation is a BC region. Cell-type deconvolution methods decompose the 
cellular composition of individual BC regions to obtain count matrices and 
spatial coordinates where each observation is a single cell. Further preprocessing 
can be performed analogously to analysis of single-cell RNA sequencing 
(scRNA-seq) data sets. b, Image-based spatial transcriptomics, such as 
fluorescent in situ hybridization (FISH) and in situ sequencing (ISS) technologies, 
capture individual locations of transcripts in multiple sequential hybridization 

rounds. Transcript locations can be aggregated to obtain count matrices and 
spatial coordinates at single-cell level. Subsequent processing is again performed 
in a similar manner to scRNA-seq. c, Cellular structure in spatial transcriptomics 
can be identified at the resolution of single cells or BC regions. Limitations of 
small feature space in image-based spatial transcriptomics (owing to only the 
targeted subset of transcripts being measured) can be resolved using spatial 
mapping, which imputes unmeasured transcripts onto spatial coordinates. 
d, Mechanisms in spatial transcriptomics can be analysed with respect to 
spatial positions of cells by identifying genes that vary across space, analysing 
neighbourhoods of cells and inferring communication events based on receptors 
and ligands, tight junctions, mechanical effects or indirect mechanisms.
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can enhance, for example, cell identification193,194 or the resolution of 
the molecular features195, or can help to identify spatial patterns of vari-
ation196. Technologies developed for gene expression profiling in space 
vary in spatial resolution (subcellular versus barcode region, where 
features are aggregated across regions), detection efficiency, through-
put192,197 and the modality resolved in space198–200. Most analysis methods 
developed so far are tailored to spatial transcriptomics and we therefore 
focus our recommendations on these measurements. The two major 
spatial molecular profiling technologies are array-based201,202 (Fig. 6a) 
and image-based approaches203–205 (Fig. 6b). Various reviews provide a 
detailed overview of different experimental techniques192,206–208. Analys-
ing spatial data sets requires analysis tools specifically tailored to this 
modality, which can be conducted with frameworks such as Squidpy209, 
Giotto210, Seurat45 or SpatialExperiment211.

Obtaining count matrices and spatial coordinates of cells
Both array-based and image-based spatial transcriptomics require spe-
cific tools to assign measured molecules to single cells. As array-based 
assays do not capture single-cell resolution, the gene expression profile 
of spots reflects cell-type composition rather than distinct cell types. 
Various methods have been proposed to decompose gene expres-
sion profiles in array-based gene expression profiles. Cell2location212, 
SpatialDWLS213 and RCTD214 estimates the cell-type composition per 
spot based on the gene expression profile of the cell populations in 
a single-cell-resolved reference. For simulated data sets, cell2loca-
tion outperformed other approaches for cell-type deconvolution, but 
requires more computational resources, whereas for real data sets, 
SpatialDWLS and RCTD performed best in terms of the overall accuracy 
score based on four different accuracy metrics215,216.

For image-based assays such as fluorescence in situ hybridization 
(FISH) and in situ sequencing (ISS), cell count matrices and spatial coor-
dinates are obtained with cell segmentation217–220. Owing to the complex-
ity of spatial transcriptomics data (in terms of the assay used, resolution 
and tissue variation) these tools often require manual fine-tuning to 
obtain valuable segmentation results. Processing pipelines such as 
Giotto and squidpy allow the addition of tailored segmentation meth-
ods to the analysis pipeline, which simplifies the comparison, choice 
and evaluation of the chosen method. Additionally, the localization of 
transcripts can be used in segmentation-free methods such as SSAM221 
or Baysor222, which directly assign cell labels to spatially proximal pixels. 
Baysor222 additionally incorporates cell-shape information obtained 
through the histological image to enhance segmentation results. These 
tools can be a useful alternative to segmentation-based approaches.

Gene expression matrices obtained by array-based spatial tran-
scriptomics followed by cell-type deconvolution, or by image-based 
spatial transcriptomics followed by segmentation, can be filtered, 
normalized and visualized in a similar way to scRNA-seq data.

Characterization of cell identity and cellular 
microenvironments
For imaging-based spatial transcriptomics data at single-cell resolu-
tion, cells can be annotated similarly to scRNA-seq data (Fig. 6c). These 
technologies commonly read out only a predefined set of transcripts. 
Genes are typically selected on the basis of prior biological knowledge 
obtained from scRNA-seq (probe selection) and might not be suited 
to the identification of rare cell subpopulations, which results in bias 
towards known cell types223. Alignment of standard spatially naive 
scRNA-seq data and targeted spatially resolved data enables imputa-
tion of the whole transcriptome (measured in standard scRNA-seq) in 

a spatially resolved manner and attempts to resolve the limitations of 
targeted feature spaces. This approach generates transcriptome-wide 
single-cell-resolved spatial transcriptomics data. Tangram224 imputes 
undetected transcripts in spatial samples by optimizing the gene-wise 
similarity between spatial and scRNA-seq data. It was shown to outper-
form other imputation methods such as gimVI225 and SpaGE226 with 
respect to various accuracy metrics and scalability215.

Beyond annotating cells based solely on their gene expression 
profiles, one can also leverage the spatial location to identify cellular 
identities. Tools such as BayesSpace227, stLearn228 and spaGCN229 iden-
tify so-called spatial domains by accounting for both gene expression 
commonalities and spatial neighbourhood structures. The labels 
obtained can be used to identify regions in the tissue that have similar 
expression profiles and might correspond to the overall morphology 
of the data set.

The identification of cellular microenvironments across different 
samples can be hindered by differences with respect to image orienta-
tion. Images might not always be perfectly aligned throughout the data 
set and comparing findings across different fields of view might be 
challenging. Tangram224, GridNet230 and eggplant231 generate common 
coordinate frameworks across samples to mitigate this issue232.

Identification of spatial patterns linked to cellular 
organization and tissue structure
Cellular microenvironments generate new insight into mechanisms 
that drive tissue states and can be analysed in multiple ways (Fig. 6d). 
Analysis of gene expression differences is widely explored for scRNA-
seq in terms of identifying highly variable genes and DGE analysis. 
For spatial transcriptomics data, this is complemented by identifi-
cation of spatially variable genes (SVGs). Methods for this purpose 
vary broadly with respect to their assumptions and their definition of 
SVGs, and there is no consensus on how to best identify SVGs. SPARK233 
and SpatialDE234, for example, leverage spatial correlation testing, 
BayesSpace227 uses Markov random fields, spaGCN229 uses graph neural 
networks to integrate gene expression data, spatial information and 
histology images, and sepal235 utilizes diffusion-based modelling to 
identify genes with spatial patterns.

Spatially dependent communication events across cells
In tissue, cells have direct contact and can interact through surface-bound 
ligands and receptors, long-range paracrine effects, bio-mechanical 
forces and indirect mechanisms such as metabolite exchange. These 
events are commonly referred to as extrinsic effects on gene expression 
variation and should be taken into consideration in efforts to describe 
cellular organization and tissue niches236. Cell communication events 
can be identified in dissociated scRNA-seq data as described above. 
Nevertheless, these methods often neglect the spatial organization of the 
underlying tissue, which can result in false-positive discoveries. Methods 
for spatial cell–cell communication typically compare gene expres-
sion patterns based on the surrounding neighbouring cells. GCNG237, 
Misty238 and NCEM236 formulate this task in terms of spatial graphs of 
cells and graph neural networks, SpaOTsc239 uses optimal transport, 
and SVCA240 quantifies the effect of cell–cell communication events 
on gene expression profiles with spatial variance component analysis.

Conclusions and future perspectives
We here review the steps of typical unimodal and multimodal analyses 
of transcriptomics, chromatin accessibility, surface protein, AIRR and 
spatially resolved single-cell data. Our work represents an entry point 
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Glossary

Adaptive immune receptor
(AIR). Transmembrane complex of 
proteins expressed on T and B cells that 
is key for the recognition of potential 
hazardous antigens and pathogens 
invading the body.

Ambient RNA
mRNA counts that originate from other 
lysed cells in the input solution and do 
not belong to the cell captured in the 
droplet itself.

Antibody-derived tags
(ADTs). Antibodies (also known as 
soluble immunoglobulins) are Y-shaped 
proteins used by the immune system 
to identify and neutralize pathogens 
by recognizing antigens. ADTs are 
directly conjugated DNA-barcode 
oligonucleotides that can be used to 
recover expressed surface proteins.

Antigens
Substances recognized as non-self that 
induce an immune response and lead 
to the production of antibodies.

Barcodes
Unique known nucleic acid sequences 
of fixed length used to label individual 
cells to enable tracking through space 
and time.

Batch effects
Confounding effects that result from 
technical differences in data generation 
across different batches, such as 
samples obtained through different 
experimental set-ups or from different 
laboratories.

CDR3
Whereas complementarity-determining 
region 1 (CDR1) and CDR2 are encoded 
in the germline V genes, CDR3 loops 
are assembled from V(D)J segments, 
giving rise to the variability of adaptive 
immune receptors.

Cell fate
A cell’s final cell type that is 
established by corresponding, 
specific transcriptional programmes.

Cell–cell communication
Interactions of cells through secreted 
ligands and plasma membrane 
receptors, secreted enzymes, 
extracellular matrix proteins or cell–cell 
adhesion proteins and gap junctions.

Cell-type deconvolution
Decomposing the cell-type 
composition of individual barcode 
regions based on a reference data set 
to obtain abundances or proportions of 
individual cells within a barcode region.

Cell segmentation
Processing of microscopic image 
domains into segments that represent 
individual cells.

Chain pairing
Assignment of cells to V(D)J chain  
types such as orphans, single pair,  
extra VJ/VDJ or multichains.

Cis-regulatory elements
(CREs). Regions of non-coding  
DNA — such as promoters, enhancers 
and silencers — that control the 
transcription of nearby genes.

Clonotype
Collection of T or B cells that 
descended from an antecedent cell, 
have the same adaptive immune 
receptors and henceforth recognize the 
same epitopes.

Compositional data
Comprises multi-dimensional 
data points (for example, cell-type 
composition) in which each component 
(or part) carries only proportional or 
relative abundance information about 
some whole.

Confounding sources of 
variation
Technical artefacts that arise from 
library preparation and sequencing, 
and biological confounders such as cell 
cycle status, which cause systematic 
bias and may distort biological findings.

Differential gene expression
(DGE). The inference of statistically 
significant differences in expression 
between groups such as healthy and 
diseased.

Epitopes
The parts of antigens that are 
recognized by antibodies, B cells or 
T cells to potentially stimulate immune 
responses.

Gene set enrichment
Grouping genes with shared 
characteristics together and testing for 
over-representation.

Graph neural networks
A deep-learning approach to do 
inference on input data represented  
in the form of a graph. For example, in  
spatial transcriptomics, cells are 
typically represented as nodes in 
graphs obtained through spatial 
proximity.

Highly variable genes
A measure to identify genes that vary 
in terms of gene expression across all 
cells present in the data set.

K nearest-neighbours graph
(KNN graph). A computational data 
structure in which cells are represented 
as nodes in a graph. Based on distance 
metrics such as the Euclidean distance 
on a principal-component reduced 
expression, cells are connected to their 
K most similar cells. K is commonly set 
to be between 5 and 100 depending on 
the data set.

Latent semantic indexing
(LSI). A dimension reduction method 
that uses term frequency inverse 
document frequency transformation 
(TFIDF) followed by singular value 
decomposition (SVD).

Lineage tracing
Tracking physiological or pathological 
changes by exogenous or endogenous 
cell markers such as DNA mutations.

Major histocompatibility 
complex
(MHC). Surface proteins that display 
or ‘present’ small peptides (epitopes) 
on the cell surface for T and B cells 
to potentially react to. Presented 
endogenous self-antigens prevent the 
immune system from targeting its own 
cells, whereas presented pathogen-
derived peptides alarm nearby immune 
cells.

Nucleosome signal
The ratio of long fragments resulting 
from one or multiple histones bound 
between the Tn5 transposition sites and 
short nucleosome-free fragments; the 
ratio is small in high-quality single-
cell assay for transposase-accessible 
chromatin sequencing (scATAC-seq) 
data.

Optimal transport
Mathematical framework to estimate 
the optimal transport plan of mass 
between two (discrete) distributions.

Phase portrait
For any given gene, the phase 
portrait visualizes splicing kinetics 
as a parametric curve (with time as a 
parameter).

Pseudobulks
Aggregated cells within a biological 
replicate whereby the data from every 
single cell is combined via sum or mean 
of counts into a single pseudo-sample 
to resemble a bulk RNA experiment.

Pseudoreplication
Also known as subsampling. 
Pseudoreplication occurs when 
replicates are not statistically 
independent, but are treated as if they 
were, such as cell samples from a single 
individual.

Reference mapping
The process of leveraging and 
transferring information from a 
reference data set to a query.
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for newcomers into the field, while updating experienced analysts  
on recent analytical best practices. All recommendations are based on  
independent benchmarks, which inevitably lag behind the latest 
method developments. With further published benchmarks, the 
individual tool recommendations might change and require regular 
updates to ensure best-practice single-cell analysis. Therefore, we refer 
to our Single-Cell Best Practices online book, which provides detailed 
method descriptions, demonstrates how to put our recommendations 
into practice and serves as an analysis template. Our online book will 
incorporate regular updates and serve as a flexible and up-to-date 
guideline for newcomers and experts in the field of multi-omic single-
cell analysis. Nevertheless, we expect that the outlined analysis work-
flows in this article will largely remain valid and correspond to the most 
widely used analysis workflows.

Beyond the growing number of methods, the number of generated 
single-cell data sets is also increasing, and we expect that learning from 
large-scale data sets such as integrated atlases will become even more 
important. Large-scale data sets enable the development of models that 
describe cellular and individual heterogeneity through, for example, 
latent space embeddings. Latent representations, as learned by frame-
works such as single-cell variational inference41, can be used for batch 
correction, clustering, visualization and DGE analysis. They simplify 
the analysis of single-cell data by skipping manual quality control steps. 
Models built on these latent spaces become predictive with query-
to-reference mapping approaches, which will create a shift from the 
unsupervised, exploratory analysis approach to single-cell analysis 
complemented by supervised predictions. Constructing multimodal 
reference atlases will further enable the characterization of cell states 
on several layers at the same time to provide multimodal insights even 
for unimodal queries.

Understanding the effects of perturbations on these multi-omic 
cellular states will become increasingly important. Highly parallel 
perturbation screens, such as genome-scale Perturb-seq117, already 
measure genome-wide perturbation effects. Coupling genome-scale 

Perturb-seq with further modalities enables the systematic exploration 
of the genetic landscape to unveil context-specific gene regulatory 
networks. This further extends single-cell genomics to pharmacologi-
cal applications such as drug target screens. We expect more analysis 
methods to be introduced that dissect successful and failed pertur-
bations and infer gene regulatory networks from multimodal data, 
such as CellOracle241 or SCENIC+242 (Fig. 2c). Moreover, new molecular 
measurements are becoming available such as the young and fast-
evolving field of single-cell proteomics243. Methods for the analysis of 
these measurements are sparse, selectively benchmarked, and best 
practices have yet to be developed.

For single-cell multi-omics to have a strong clinical impact, the inclu-
sion of patient covariates from, for example, electronic health records 
can prove vital. Tools for their exploratory analysis, the integration with 
omics data sets and the mapping of omics measurements to phenotype 
information are lacking, and we expect further developments in this 
direction. We foresee such integrative workflows to build upon the 
foundation that we have established for multimodal single-cell analysis.
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