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Abstract

The class of a-b power interaction models, proposed by Yu et al. (2024), pro-
vides a general framework for modeling sparse compositional count data with
pairwise feature interactions. This class includes many distributions as special
cases and enables zero count handling through power transformations, making
it especially suitable for modern high- throughput sequencing data with excess
zeros, including single-cell RNA-Seq and amplicon sequencing data. Here, we
present an extension of this class of models that can include covariate information,
allowing for accurate characterization of covariate dependencies in heterogeneous
populations. Combining this model with a tailored differential abundance (DA)
test leads to a novel DA testing scheme, cosmoDA, that can reduce false posi-
tive detection caused by correlated features. cosmoDA uses the generalized score
matching estimation framework for power interaction models Our benchmarks
on simulated and real data show that cosmoDA can accurately estimate fea-
ture interactions in the presence of population heterogeneity and significantly
reduces the false discovery rate when testing for differential abundance of corre-
lated features. Finally, cosmoDA provides an explicit link to popular Box-Cox-type
data transformations and allows to assess the impact of zero replacement and
power transformations on downstream differential abundance results. cosmoDA is
available at https://github.com/bio-datascience/cosmoDA.

Keywords: Compositional data, Score matching, Differential abundance, Generative
model, Single-cell RNA sequencing, Microbiome
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1 Introduction

Count matrices, detailing the compositional makeup of cellular constituents in a sam-
ple, are an important data modality derived from modern high-throughput sequencing
(HTS) experiments, including amplicon sequencing (Quinn et al., 2018; Tsilimigras
and Fodor, 2016) and single-cell RNA-Sequencing (scRNA-Seq) (Büttner et al., 2021;
Heumos et al., 2023). These matrices commonly have the form X̃ ∈ Nn×p

0 and show the
abundance of p features (cell types or microbial taxa) in n tissues (Regev et al., 2017),
bacterial communities (McNulty et al., 2023), or microbial habitats (Turnbaugh et al.,
2007). Because sequencing capacity of HTS experiments is technically limited, each
sample only represents a small part of a larger population, rendering the sum of counts
in a row non-quantitative and making the data compositional (Gloor et al., 2017).
Dividing each sample by its total sum yields relative abundance data, which is pro-
portionally equivalent to the original data and constrained to the (p− 1)-dimensional
probability simplex (Aitchison, 1982):

∆ ≡ ∆p−1 =
{
x ∈ Rp : x ⪰ 0, 1⊤

p x = 1
}
. (1)

Generative models for HTS-derived compositional data commonly respect compo-
sitionality either by transforming the data into Euclidean space through log-ratio or
similar transformations (Love et al., 2014; Mishra and Müller, 2022), or by using dis-
tributions directly defined on the probability simplex. The Dirichlet distribution is a
popular choice due to its relatively simple structure and interpretability (Hijazi and
Jernigan, 2009; Wadsworth et al., 2017; Büttner et al., 2021; Ostner et al., 2021). The
assumption of independent features (apart from the compositional effect) is, however,
a major limitation of the Dirichlet distribution. To allow for more complex dependency
structures, Aitchison and Shen (1980) proposed the class of logistic normal distri-
butions, which include the estimation of feature-feature interactions. Several lines of
research make successful use of logistic normal models (and extensions thereof) for
HTS data (see, e.g., Xia et al. (2013); Zeng et al. (2022)) and address the compu-
tational challenges in scaling parameter inference to large-scale datasets (Silverman
et al., 2022).

Another challenge in generative HTS data modeling is the presence of zeroes.
Since the logistic normal distribution requires the underlying data to be positive due
to logarithmic transformations, zero entries in the primary data need to be replaced
by positive values (Lubbe et al., 2021; Greenacre et al., 2023). Any such proce-
dure inevitably distorts the measured data compositions, especially for rare features
with many zero entries (Lubbe et al., 2021), resulting in another source of modeling
inaccuracy.

In his seminal work, Aitchison (1985) provided a general class of distribution, the
Ap−1 class, that includes the logistic normal and the Dirichlet distribution as special
case. This class forms the basis for more recent models that extend the Ap−1 class and
do not require zero imputation. For low-dimensional data, Scealy and Wood (2022)
and Scealy et al. (2024) introduced the polynomially tilted pairwise interaction (PPI)
model, which has properties similar to the Dirichlet distribution at the boundaries of
the simplex. The class of a-b power interaction models, introduced by Yu et al. (2024),
achieves validity on the simplex boundaries by replacing the logarithm with power
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transformations. These works further use score matching estimation (Hyvärinen, 2005)
for computationally efficient parameter inference, reducing the estimation problem to
solving a (regularized) quadratic optimization problem. However, both the PPI and
the a-b power interaction model currently only allow to model a homogeneous sample
population and cannot describe differences between groups of samples.

A central task in HTS data analysis is the detection of significant differences in
the feature composition, given environmental, clinical, or host-specific perturbations
or variations. This problem, also known as differential abundance (DA) testing, faces
the same challenges as generative modeling (Gloor et al., 2017; Tsilimigras and Fodor,
2016). While compositionality and zero handling are discussed in most state-of-the-art
DA testing methods (Lin and Peddada, 2020; Zhou et al., 2022; Nearing et al., 2022),
only few methods explicitly include interactions between compositional features in
their testing procedure (Ma et al., 2024). Such interactions, however, may contribute
to the false discovery of certain features that are not directly impacted by the per-
turbations or covariate changes, but simply strongly correlate with the differentially
abundant feature. Consider a composition of five microbial taxa a, b, c, d, e, where a
and b have a symbiotic relationship and their abundances are highly correlated (Figure
1a). A treatment now targets taxon a and causes a decline in its population. This will
in turn cause the abundance of taxon b to also decrease, although it was not directly
influenced by the treatment. Classical DA testing methods will not be able to discern
between these primary and secondary effects caused by the treatment, detecting both
a and b as differentially abundant.

In this work, we present a new DA framework, termed cosmoDA (compositional
score matching optimization for Differential Abundance analysis), that addresses the
challenge of feature interactions in DA testing. cosmoDA is based on the a-b power
interaction models from Yu et al. (2024) and introduces a linear covariate effect on
the location vector, thus enabling the inclusion of sample group indicators or con-
tinuous covariates of interest. We provide a framework for assessing the significance
of the estimated covariate effects, which, in the case of group indicator variables,
allows principled compositional differential abundance testing. A similar covariate-
extended model was introduced for low-dimensional compositional data by Billheimer
et al. (2001), albeit only for the special case of the logistic normal model. In the a-
b power interaction models, maximum likelihood estimation is not possible due to
the intractability of computing the normalzing constant. We thus resort to the score
matching framework (Hyvärinen, 2005). By carefully studying the structural proper-
ties of the underlying score matching objective, our extended estimation framework
retains the favorable quadratic nature of the underlying optimization problem with
negligible computational overhead. Regularization on the interaction effects further
ensures model identifiability and selection of the most important correlation patterns.
The characteristics of the a-b power interaction model thus ensure that feature inter-
actions are adequately considered and zero entries in the underlying data do not need
to be replaced or imputed.

The remainder of the paper is structured as follows. In the next section, we intro-
duce cosmoDA as an extension of the a-b power interaction model, describe the score
matching estimation framework, and explain how the power transformation makes zero
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replacement obsolete. We then describe the model regularization framework, sketch
the computational implementation, and introduce the differential abundance testing
framework cosmoDA. Section 3 provides several simulated data benchmarks that show-
case the ability of cosmoDA to (i) correctly estimate sparse interaction matrices in
the presence of covariates and (ii) reduce the false discovery rate in differential abun-
dance testing compared to other state-of-the-art methods. We investigate the impact
of different power transformations on differential abundance in real scRNA-seq and
16S rRNA sequencing data in section 4 and provide a data-driven method to select
the power exponents in practice. Section 5 discusses the results, highlights strengths
and limitations of the work, and provides guidelines for future research. cosmoDA is
available as a Python package at https://github.com/bio-datascience/cosmoDA.
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2 Methods

We consider to model compositional matricesX where each row x(i) ∈ ∆, i = 1, . . . , n,
represents a sample, and each column xj , j = 1, . . . , p, represents the jth com-
positional feature. We are motivated by the large number of available biological
“compositional” count matrices X̃ ∈ Nn×p

0 derived from HTS experiments. Important
instances include 16S rRNA amplicon sequencing data, where each feature represents
read counts associated with a microbial taxon Gloor et al. (2017) and scRNA-Seq
experiments, where each feature represents a certain cell-type proportion, as derived
from clustered transcriptional profiles (Büttner et al., 2021; Heumos et al., 2023). Due
to the compositional nature of the derived count data, a common approach is to scale

each observation x̃(i) by its library size S(i) =
∑p

j=1 x
(i)
j to obtain relative abundance

samples x(i) = x̃(i)/S(i) ∈ ∆ (Gloor et al., 2017).

2.1 The covariate-extended a-b power interaction model

Following the proposal in Yu et al. (2024), we model samples in X through the a-
b power interaction model on the (p − 1)-dimensional simplex ∆. The unnormalized
probability density for one sample x ≡ x(i) reads:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
η⊤xb

)
, x ∈ ∆; K = KT ; K1p = 0p . (2)

Here, interactions between features are modeled through the interaction matrix K ∈
Rp×p, and the location vector η ∈ Rp describes the base composition of the individual
features. This model belongs to the class of exponential family models. Using the
conventions in Yu et al. (2024), xa ≡ log(x); 1/a ≡ 1 if a = 0, and xb ≡ log(x); 1/b ≡ 1
if b = 0, power interaction models encapsulate several probability distributions as
special cases.

With parameter settings a = b = 0, the model includes the Dirichlet distribu-
tion with the additional constraints K = 0, η ≻ −1, the logistic normal distribution
(Aitchison and Shen, 1980) with the constraints K1p = 0p,x

TKx > 0 ∀x,1T
p η = −p,

and Aitchison’s Ap−1 family of distributions Aitchison (1985) with xTKx > 0 ∀x,η ⪰
−1. For the logistic normal case, the interaction matrix K is equivalent to the
inverse covariance matrix of logratio-transformed data, given specific linear trans-
formations (Erb, 2020). With parameter settings a = 1 and b = 0, the model is
equivalent to the PPI distribution (Scealy and Wood, 2022; Scealy et al., 2024) (see
Appendix A), and with parameter settings a = b = 1, the power interaction model is
equivalent to the maximum entropy distribution on the simplex with the constraints
K1p = 0p,x

TKx > 0 ∀x, as derived in Weistuch et al. (2022).
As stated in Theorem 1 from Yu et al. (2024), the probability density in Eq. (2) is

proper if either

• a > 0, b > 0;
• a > 0, b = 0, ηj > −1 ∀j;
• a = 0, b = 0, log(x)TK log(x) > 0 ∀x ∈ ∆;
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• a = 0, b > 0, log(x)TK log(x) ≥ 0 ∀x ∈ ∆.

We next extend the original proposal of the a-b power interaction model by includ-
ing a (continuous or binary) covariate vector y ∈ Rn (or y ∈ {0, 1}n, respectively) in
the model. The covariate describes, e.g., a concurrently measured quantity of interest
for each sample, or, more relevant in our context, a condition-specific indicator vec-
tor. We model the influence of y ≡ y(i) on x(i) by introducing a linear model on the
location vector η:

η = η0 + yη1 . (3)

Plugging this model into Eq. (2) results in the covariate-extended a-b power
interaction model:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
(η0 + yη1)

⊤xb

)
, x ∈ ∆; K1p = KT1p = 0p .

(4)
This formulation of the model assumes that all samples stem from an overall

population with fixed interaction matrix K, but allows the proportions of features,
described by η, to be dependent on the measured covariate y. For the probability
density of the covariate-extended a-b power interaction model to be proper, the same
conditions hold as for the model in Eq. (2), replacing η with η0 + yη1.

The model in Eq. (4) forms the basis for our differential abundance testing
framework cosmoDA (compositional score matching optimization for Differential
Abundance analysis). In case where y represents a binary group indicator, e.g., case
vs. control samples, cosmoDA fits the data to the model and tests for significant
changes of the individual components of η1. Figure 1 provides a conceptual overview
of cosmoDA. Before detailing the specific test statistics, we describe the underlying
parameter estimation framework.

2.2 Model estimation

2.2.1 Score matching for power interaction models

Efficient parameter estimation for the a-b power interaction models (Eq. 2) through
generalized score matching (Hyvärinen, 2005, 2007; Yu et al., 2019) was proposed by
Yu et al. (2024). Given an (unknown) true data distribution P0 with density p0 and a
family of distributions of interest P(D), score matching tries to find P ∈ P(D) with
density p such that the Hyvärinen divergence between the gradients of the logarithm
of the densities of P0 and P is minimized:

1

2

∫
D
p0(x)

∥∥∥∇ log p(x)⊙ h̃
1/2

(x)−∇ log p0(x)⊙ h̃
1/2

(x)
∥∥∥2
2
dx , (5)

where h̃(x) = (h̃1(x1), . . . , h̃p(xp)) is a weight function. Yu et al. (2022) show that
score matching can be performed on domains with positive Lebesgue measure in Rp

by setting h̃ such that ∇ log p(x)⊙ h̃
1/2

(x) does not vanish at the boundaries of the
domain.

Yu et al. (2024) adapted the generalized score matching framework for the a-b
power interaction models on the (p − 1)-dimensional probability simplex in Rp by
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Fig. 1 cosmoDA allows to perform generative modeling and differential abundance test-
ing on compositional data with feature interactions. (a) Interactions between features can
alter the abundance of features although they are not directly associated with the condition. cosmoDA
is able to accurately distinguish primary from secondary effects by inferring pairwise feature inter-
actions in addition to the effects associated with the condition. (b) Power transformations allow to
analyze compositional data without imputation of zero values. For decreasing exponents, the Box-Cox
transformation converges to the logarithm. (c) cosmoDA uses regularized score matching for param-
eter inference. The optimization problem therefore reduces to a quadratic function with parameters
Γ and g defined by averaging over all samples. (d) Differential abundance testing in cosmoDA uses a
studentized test statistic. Only the feature primarily associated with the condition (Feature a) has a
small adjusted p-value.

profiling out the last coordinate xp ≡ 1 −
∑m−1

j=1 xj , similar to the additive log-ratio

transformation. We follow this approach, setting h̃j(x) = (hj ◦φj)(x) with hj(x) = xcj
and φj(x) = min{xj , xp, Cj} and fixing Cj = 1 and c = 2, as recommended by Yu

et al. (2024). This results in a weight function h̃j(x) = min{xj , xp}2. With p(x) from
the family of a-b power interaction models, the following mild assumptions hold (Yu
et al., 2024):

1. p0(xj ;x−j)hj(φ(x)j)∂j log p(xj ;x−j)
∣∣∣xj↗bk(x−j)

−

xj↘ak(x−j)+
= 0

for all k = 1, . . . ,Kj(x−j) and x−j ∈ S−j,D for all j = 1, . . . , p;
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2.
∫
D p0(x)

∥∥∇ log p(x)⊙ (h ◦φ)1/2(x)
∥∥2
2
dx < +∞,∫

D p0(x)
∥∥[∇ log p(x)⊙ (h ◦φ)(x)]′

∥∥
1
dx < +∞.

3. ∀j = 1, . . . , p and almost everywhere x−j ∈ S−j,D,, the component function hj of
h is absolutely continuous in any bounded sub-interval of the section Cj,D(x−j).

Therefore, a consistent estimator of the loss function (Eq. 5) follows as a sample-
and feature-wise sum over the entire dataset:

L̂h(P ) =
1

2

p∑
j=1

n∑
i=1

1

2
(hj ◦ φj)

(
X(i)

)
·
[
∂j log p

(
X(i)

)]2
+

∂j

[
(hj ◦ φj)

(
X(i)

)
· ∂j log p

(
X(i)

)]
, (6)

where X(i), 1 ≤ i ≤ n, form an i.i.d. sample from the unknown data distribution P0

and P is an a-b power interaction model with unnormalized density as described in
Eq. (2). Aggregating K and η to θ = (vec(K),η) and defining Pθ and its density pθ
accordingly shows that the power interaction model without covariate (Eq. 2) follows
an exponential-family-type model

log pθ(x) = θ⊤t(x)− ψ(θ) + b(x) ,x ∈ ∆ , (7)

where the function t(·) denotes the function for the sufficient statistics, ψ(·) the
cumulant function, and b(·) the logarithm of the base measure, respectively.

Then, L̂h can be reformulated as a quadratic optimization problem:

L̂h(Pθ) =
1

2
θ⊤Γ(x)θ − g(x)⊤θ + const. (8)

with Γ(x) ∈ Rr×r and g(x) ∈ Rr are sample averages of known functions in x
only. Analogously, the same considerations hold for the covariate-extended a-b power
interaction model (Eq. 4), substituting η with η0+yη1. This substitution does not yet
provide individual estimates of η1 and η0 though, which are required for differential
abundance testing. To obtain these individual estimates, a look at the exact derivation
of Γ and g, as described by Yu et al. (2024), is necessary. We first split the location
vector into its two parts η0 and η1, and set θ = (vec(K),η0,η1). After dropping the
last coordinate by assuming xp ≡ 1− 1⊤

p−1x−p as above, the first and second partial
derivatives for the covariate-less model (Eq. 4.1 and 4.2 in Yu et al. (2024)) can easily
be adapted to the covariate-extended model:

∂j log p(x−p) =−
(
κ⊤
,jx

a
)
xa−1
j +

(
κ⊤
,px

a
)
xa−1
p + ηjx

b−1
j − ηpxb−1

p , (9)

=−
(
κ⊤
,jx

a
)
xa−1
j +

(
κ⊤
,px

a
)
xa−1
p

+ η0,jx
b−1
j − η0,pxb−1

p + yjη1,jx
b−1
j − ypη1,pxb−1

p

∂jj log p(x−p) =− (a− 1)
[(
κ⊤
,jx

a
)
xa−2
j +

(
κ⊤
,px

a
)
xa−2
p

]
(10)

− a
[
κjjx

2a−2
j + κppx

2a−2
p + 2κjpx

a−1
j xa−1

p

]
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+ (b− 1)
[
ηjx

b−2
j + ηpx

b−2
p

]
=− (a− 1)

[(
κ⊤
,jx

a
)
xa−2
j +

(
κ⊤
,px

a
)
xa−2
p

]
− a

[
κjjx

2a−2
j + κppx

2a−2
p + 2κjpx

a−1
j xa−1

p

]
+ (b− 1)

[
η0,jx

b−2
j + η0,px

b−2
p

]
+ (b− 1)

[
yjη1,jx

b−2
j + ypη1,px

b−2
p

]
Plugging these definitions into the loss function in Eq. (6) and rearranging the

individual terms in the same way as in Yu et al. (2024) yields Γ and g as follows
(Figure 1c):

Γ ≡

 ΓK ΓK,η0 ΓK,η1

Γ⊤
K,η0

Γη0 Γη0,η1

Γ⊤
K,η1

Γ⊤
η0,η1

Γη1

 ∈ R(p2+2p)×(p2+2p), g ≡
(
vec(gK), gη0

, gη1

)
∈ Rp2+2p,

(11)

where Γ and g have a block structure with ΓK ∈ Rp2×p2

, ΓK,η0 ∈ Rp2×p, ΓK,η1 ∈
Rp2×p, Γη0 ∈ Rp×p, Γη0,η1 ∈ Rp×p, Γη1 ∈ Rp×p, and gK ∈ Rp2

, gη0
∈ Rp, gη1

∈ Rp.
The exact derivations are shown in Appendix B. By recognizing that each entry

of Γ and g can be written as a mean over all samples, the elements related to η1 can
be computed directly from the elements related to η0:

ΓK,η1 =
1

n

n∑
i=1

yΓ
(i)
K,η0

Γη0,η1 =
1

n

n∑
i=1

yΓ(i)
η0

Γη1 =
1

n

n∑
i=1

y2Γ(i)
η0

gη1
=

1

n

n∑
i=1

yg(i)
η0
.

Therefore, the computational overhead for computing the additional sub-matrices
and sub-vectors related to η1 is negligible. Still, the addition of p dimensions to the
optimization problem (Eq. 8) increases the problem dimensionality from p2 + p to
p2 + 2p compared to the covariate-less model.
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2.2.2 Model Identifiability through Regularization

Since the number of parameters in the power interaction model scales quadratic with
p, real HTS data applications are in the high-dimensional regime with more param-
eters than samples, i.e., p2 + 2p > n. To enable model identification, we place a ℓ1
regularization penalty on the off-diagonal elements Koff of K:

L̂h,C,λ1,δ(Pθ) =
1

2
θ⊤Γδ(x)θ − g(x)⊤θ + λ1||vec(Koff)||1 . (12)

As defined in section 2.2.1, θ = (vec(K),η0,η1) comprises all model parameters,
and Pθ denotes the power interaction model with probability density pθ defined in
Eq. 4. Following Yu et al. (2024), we multiply the diagonal entries of Γ(x) correspond-
ing to K by a factor δ > 1 to avoid an unbounded loss function. We denote Γ(x) with
scaled diagonal entries as Γδ(x). Here, we use the default value from the implementa-
tion of Yu et al. (2024), δ = 2 − 1

1+4emax(6 log(p)/n,
√

6 log(p)/n)
. In cases where p ≫ n,

the entries of η0 and η1 can be penalized as well with a regularization parameter λ2:

L̂h,C,λ1,λ2,δ(Pθ) =
1

2
θ⊤Γδ(x)θ−g(x)⊤θ+λ1||vec(Koff)||1+λ2||η0||1+λ2||η1||1 (13)

Furthermore, assuming K to be sparse matches the widely popular view of sparse
association networks between microbial features or cell types (see, e.g., (Kurtz et al.,
2015)). In the following, we will focus our attention on models without regularization
on the location parameter.

Algorithm 1

Input: Initial estimate θ̂(0)

Input: tmax, maximum number of iterations
Input: ϵ, the maximal tolerance level
1: Initialize t← 1
2: Initialize C ← ϵ+ 1 (C stands for convergence criteria)
3: while C > ϵ or t < tmax do
4: θ̂(t) ← θ̂(t−1)

5: for j ← 1, 2, . . . , s do

6: θ̂
(t)
j ← Soft

(
−(Γδ(x)−j,j)

T θ̂
(t)
−j−g(x)j

Γδ(x)jj
, λ
Γδ(x)jj

)
.

7: end for
8: C ← ∥θ̂(t) − θ̂(t−1)∥1
9: t← t+ 1

10: end while

2.2.3 Computational implementation

The regularized score matching loss L̂h,C,λ,δ(Pθ) (Eq. 12) represents a (large-scale)
ℓ1-penalized quadratic optimization problem that can be numerically solved with
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a variety of optimization methods. Here, we follow Yu et al. (2024) and employ
a proximal coordinate descent scheme (see also Algorithm 2 in Lin et al. (2016)).
This algorithm also covers the covariate-extended a-b power interaction model and is
described in Algorithm 1. Here, s is the dimensionality of θ and Soft(·) is the softmax
function. The default settings in cosmoDA are ϵ = 10−1 and tmax = 1000.

At its core, our Python implementation of Algorithm 1 uses the C implementation
from the genscore package Yu et al. (2019, 2024) and included in the cosmoDA Python
package. The cosmoDA package also provides an interface for a-b power interaction
models that is equivalent to the R interface in the genscore package.

2.3 Differential Abundance Testing

One of the key objectives of cosmoDA is to determine the statistical significance of the
covariate effects η1,j for every feature j = 1 . . . p. Here, we combine results from Zhou
et al. (2022) and Scealy and Wood (2022) to test the null hypothesis

H0 : η1,j = 0 against the alternative H1 : η1,j ̸= 0 .

Let θ̂ = (vec(K̂), η̂0, η̂1) be the parameter estimates obtained from the score matching
estimation framework. Scealy and Wood (2022) show that, under certain technical
conditions and assumptions (see Theorem 1 and 2 in (Scealy and Wood, 2022)) the

quantity Ŝ = Γ−1(x)Σ̂0Γ
−1(x) yields a consistent estimator for Var(θ̂). In cosmoDA,

we estimate Σ̂0 as follows:

Σ̂0 =
1

n

n∑
i=1

(Γ̃
(i)

δ (x)θ̂ − g̃(i)(x))(Γ̃
(i)

δ (x)θ̂ − g̃(i)(x))T , (14)

where Γ̃
(i)

δ (x) and g̃(i)(x) are the components of Γ̃δ(x) and g(x) corresponding
to the i-th sample. By selecting the components of Ŝ corresponding to η1,j , we derive
the studentized test statistic

Tj = η̂1,j/Ŝη1,j
, (15)

which approximately follows a t-distribution with n − 3 degrees of freedom. The
corresponding asymptotic p-values read:

pj = 2Ft,n−3(−|Tj |) , (16)

where Ft,n−3 is the cumulative distribution function of the t-distribution with n−3
degrees of freedom (Zhou et al., 2022). In cosmoDA, raw p-values are adjusted for
multiple testing using the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) (see Figure 1d for illustration).

2.4 Model selection and hyperparameter tuning

To make cosmoDA fully data-adaptive, we provide several strategies to select the hyper-
parameters of the framework. We first describe regularization parameter selection,
followed by a novel data-driven approach to select the exponents a and b in a-b power
interaction models.
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2.4.1 Regularization parameter selection

cosmoDA provides several model selection methods to determine the regularization
parameter λ1 (and λ2, respectively). The default strategy is k-fold cross-validation
(k = 5) with the 1SE rule (Hastie et al., 2009). Here, the largest λ1 value is chosen
that lies within one standard error band of the λ1 that minimizes the cross-validated
regularized score matching loss (Eq. 12). The range of the λ1-path is chosen to cover
the whole range of possible sparsity of K, i.e., from a fully dense K to a diagonal K
(see Fig. E16b). This range depends on the dimensions of the dataset at hand and
the chosen power transformation (see Appendix C). Per default, our implementation
considers 100 λ1-values log-linearly spaced in the interval

[
10−6, 1

]
.

cosmoDA also allows λ1 to be selected via the extended Bayesian Information Cri-
terion (eBIC, Foygel and Drton (2010)). Following Yu et al. (2019), the eBIC for the
a-b power interaction model reads:

eBICγ(vec(Koff)) = S(vec(Koff)) log(n)−2 log(L̂h,C,λ1,δ(Pθ)+2γ||vec(Koff)||1 , (17)

where S(vec(Koff)) denotes the size of the support of vec(Koff). The default γ value
is γ = 0.5.

2.4.2 Data-driven selection of a-b powers

A key strength of a-b power interaction models is their seamless applicability to
compositional data with excess zeros. While the limiting case a = b = 0 (i.e., log-
transforming the data) requires a strategy for zero replacement or zero imputation
(Lubbe et al., 2021; Greenacre et al., 2023) with potentially detrimental effects for
downstream analysis (Te Beest et al., 2021), we propose a data-driven tuning strategy
for power interaction models with powers a > 0 and b > 0 that keeps the original data
unaltered. For simplicity, we consider the setting a = b.

We first note that the power transformations in the models 2 and 4 are similar to
the Box-Cox transformation (Box and Cox, 1964) of the form:

xϕ =

{
1
ϕ (x

ϕ − 1), if ϕ > 0

log x, if ϕ = 0 ,
(18)

with limϕ→0
1
ϕ (x

ϕ− 1) = log(x) (see also Fig. 1b for illustration). The Box-Cox trans-

formation and the power transformation used in a-b power interaction models (Eqs. 2,
4) are, however, not equivalent due to the −1 term in the Box-Cox transformation. By
introducing scaling factors for the score matching elements in Eq. 11, we can never-
theless achieve the same asymptotic approximation to the logarithm as the Box-Cox
transformation (see Appendix C for details).

While ϕ is typically tuned to make the transformed data approach normality, we
follow a geometric strategy inspired by the one presented in Greenacre (2024). Specif-
ically, we determine ϕ = a = b to let the resulting “geometry” of transformed data be
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as similar as possible to the appropriate log-ratio geometry. This is achieved by maxi-
mally aligning the principal component (PC) embedding of log-ratio transformed data
with imputed zeros and the PC embedding of a power transformation with parameter
ϕ of the data with zero entries Tsagris et al. (2016). Maximal alignment is defined as
the highest Procrustes correlation of both embeddings over a range of values ϕ ∈]0, 1[.
In the case of power interaction models, it is natural to select a power that closely
matches the geometry of data after the additive log-ratio (ALR) transform, since a-
b power interaction models with ϕ = a = b = 0 are a generalization of Aitchison’s
Ap−1 distributions after ALR transformation of the data (Aitchison and Shen, 1980).
Since equal dimensionality of the ALR and power-transformed data is required, we
append the column log(

Xp

Xp
) = 0p to the ALR transformation of X before performing

PC analysis.
The original procedure to obtain maximal Procrustes correlation is outlined in

Greenacre (2024). We use the same procedure, but with different input matrices. Let
Xϕ be the Box-Cox-like transformed data with

Xϕ,j =
1

ϕ
(p

Xϕ
j∑p

k=1 X
ϕ
k

− 1) , (19)

and XALR is the ALR-transformed data (with pseudocount 0.5 for all zeros) with
column 0p appended.

We compute the Procrustes correlation rϕ between the two data matrices as follows:

(i) Matrix normalization: X∗
ϕ = Xϕ/

√
trace(XT

ϕXϕ)

X∗
ALR = XALR/

√
trace(XT

ALRXALR)

(ii) SVD of cross product: S = X∗
ϕ
T
X∗

ALR = UΣV T

(iii) Optimal rotation matrix: Q = V UT

(iv) Sum of squared errors: Eϕ = trace((X∗
ϕ −X∗

ALRQ)T (X∗
ϕ −X∗

ALRQ))

(v) Procrustes correlation: rϕ =
√

1− Eϕ

For a given dataset, the optimal power ϕ∗ is determined by ϕ∗ := argmaxϕ rϕ for
ϕ ∈]0, 1[.

13

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.627006doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.05.627006
http://creativecommons.org/licenses/by-nc/4.0/


3 Simulation benchmarks

We next provide two simulation studies that benchmark two key features of cosmoDA:
(i) sparse recovery of feature interactions in the covariate-extended a-b power inter-
action model and (ii) identification of differentially abundant features in the presence
of feature correlations. The first benchmark complements the extensive covariate-free
simulation benchmarks of Yu et al. (2024), the second one provides a new realistic
semi-synthetic simulation and evaluation setup, incorporating scRNA-Seq data Perez
et al. (2022).

3.1 Sparse recovery of feature interactions in the presence of a
covariate

One of the core strengths of a-b power interaction models is their ability to recover
(potentially) sparse feature interaction matrices K. Yu et al. (2024) provide an exten-
sive simulation framework that evaluates the influence of hyperparameters, sample
size, and interaction topologies on recovery performance of the a-b power inter-
action model. We focus here on evaluating the influence of covariate inclusion on
the model’s ability to identify sparse feature interactions. Specifically, we expect
interaction recovery to be independent of covariate inclusion.

Following Yu et al. (2024), we generated compositional data X ∈ ∆n
p−1 from an

Ap−1 model with p = 100 features using the model in Eq. 4 with the constraint that
xTKx > 0 ∀x,η ⪰ −1. To probe sample size dependencies, we used two scenarios n =
80 and n = 1000, respectively. We set η0 = −1p, and considered banded interaction
matrices K with bandwidths s = 2 if n = 80 and s = 7 if n = 1000, as suggested by
Yu et al. (2024). We further defined the nonzero off-diagonal entries of K as Ki,j =
|i − j|/(s + 1) − 1 for all i ̸= j, 1 ≤ |i − j| ≤ s, and the diagonal entries as the
negative sum of the off- diagonals, to ensure the sum-to-zero constraint on the rows
of K (Figure E2). This definition slightly deviates from the definition in Yu et al.
(2024), as the sign of all entries in K is flipped, but ensures positive definiteness of K.
This modification allows the efficient use of the adaptive rejection sampler for data
generation, as provided in the genscore R package (Yu et al., 2019). For both sample
sizes, we generated R = 50 replicates of the data.

We applied three different methods for regularized estimation of the underlying
interaction matrix K to all datasets:

1. The a-b power interaction model (a = b = 0) without covariate (Eq. 2). This
model allows the estimation of K and η0. We estimated these models through the
implementation in cosmoDA.

2. The covariate-extended a-b power interaction model (a = b = 0) (Eq. 4). Here, we
used a misspecified y where each entry is drawn uniformly at random from {0, 1}.
The model allows the estimation of K,η0, and η1. We used the implementation in
cosmoDA.

3. The graphical lasso model on CLR-transformed data, as introduced in SPIEC-
EASI (Kurtz et al., 2015). The non-zero entries of the resulting sparse inverse
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covariance matrix serve as a (mis-specified) proxy for K. We used the implementa-
tion from the gglasso package (Schaipp et al., 2021). Model selection was performed
with the extended BIC (eBIC) criterion (Foygel and Drton, 2010) with γ = 0.25.

For all three models, we used nλ = 100 values for the regularization parameter,
log-spaced in the range 10−6 < λ1 < 1, and k = 5 cross-validation folds. All score
matching estimation parameters were set to the defaults recommended by Yu et al.
(2024) (see also Section 2.2.3).

To measure recovery performance, we compared the support of the off-diagonal
elements of the estimated K̂ and the ground truth K by calculating the true posi-
tive rate (TPR) and true negative rate (TNR), and assessing them through Receiver
operating characteristic (ROC) curves.

Fig. 2 Recovery of K improves with sample size and is not impacted by covariate
inclusion. Receiver operating curves for cosmoDA with and without covariate effect estimation, as
well as CLR transform and graphical lasso for with (a) n = 80 and (b) n = 1000. The solid lines
depict the mean ROC over all 50 generated datasets, the shaded areas show the standard error.

Figure 2 summarizes the average ROC curves for the two different sample sizes.
For n = 80 (Figure 2a), we observed that both a-b power interaction models showed
almost equivalent ability to reconstruct the interaction matrix (mean AUC 0.782 vs.
0.794). Their performance was slightly worse that the graphical lasso (mean AUC
0.806), especially for false positive rates smaller than 0.2. When increasing the sample
size to n = 1000, all three methods showed improvements in recovery performance,
improving the mean average AUC as well as reducing the variance in results (Figure
2b). As expected, including a covariate in the a-b power interaction model had only
marginal impact on the mean AUC (0.965 vs. 0.968). Contrary to the low sample size
case, both a-b power interaction models significantly outperformed the (misspecified)
graphical lasso (mean AUC 0.84) across the entire range of regularization strengths.
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3.2 Differential abundance testing in the presence of
correlated features

To test the effectiveness of cosmoDA in detecting differentially abundant features in
the presence of realistic feature interactions, we designed the following semi-synthetic
simulation benchmark.

We considered a scRNA-seq data set from Perez et al. (2022) that derived relative
abundance values of p = 11 types of peripheral blood mononuclear cells (PBMCs)
from overall n = 352 samples. The samples come from 260 unique subjects, 162 of
which are patients with with systemic lupus erythematosus (SLE) (208 samples) and
98 healthy controls (144 samples). We used these data to estimate realistic base values
for the interaction matrix K and the location vector η, respectively. The base model
is the a-b power interaction model without covariate (Eq. 2). We set a = b = 0 and
used λ1 = 0.043 as sparsity parameter. We considered the NK cell type as the pth
reference component for all power interaction models due to their high abundance and
low variance between groups. The resulting interaction matrix KB and location vector
η0,B are shown in Figure 3.

Fig. 3 Data generation parameters used for the Differential abundance testing bench-
mark, p = 11. Parameters were generated by running the power interaction model without covariate
on the dataset from Perez et al. (2022). The names of the cell types from the original dataset are
shown in brackets. (a) Interaction matrix (KB). (b) Location vector (η0,B).

To generate ground-truth differentially abundant cell types, we defined the effect
vector η1,B = τiη0,B , where i is a p-dimensional binary vector that indicates the
cell types that are influenced by the condition (i.e., are differentially abundant), and
τ = (−0.5,−0.3, 0.3, 0.5, 1) controls the relative effect size.

Using this model, we considered three differential abundance scenarios: (i) Esti-
mation when the effect is on a rare cell type with (pDC), (ii) effect estimation on an
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abundant cell type (T4), and (iii) effects on both cell types (pDC and T4). Two differ-
ent sample sizes (n = 100 and n = 1000) were considered for each case. For each of the
resulting 30 scenarios, we generated five datasets with n/2 control samples (K = KB ,
η = η0,B) and n/2 case samples (K = KB , η = η0,B + η1,B). To simulate these
semi-synthetic data sets, we used the adaptive rejection sampler from the genscore R
package (Yu et al., 2019).

To showcase the performance of cosmoDA for higher dimensional datasets, we
conducted another set of simulations with p = 99 features. We constructed the corre-
sponding interaction matrix as a block-diagonal matrix, using the original KB matrix
in each of the nine blocks (see Figure E4a). Likewise, we stacked the scenario-specific
location vectors η0,B and η1,B nine times to obtain the high-dimensional location
vectors (Figure E4b).

We compared the ability of four different DA testing methods to recover differen-
tially abundant features at an expected FDR level of α = 0.05:

• DA testing with cosmoDA (a = b = 0). We used nλ = 20 values between 10−3 and
2 for λ1 and 5-fold cross validation with the 1SE rule for model selection. All other
parameters were set to default values described in Section 2.2.3).

• ANCOM-BC (Lin and Peddada, 2020) with default parameters as an example for
a common DA testing method without feature interactions. Since ANCOM-BC
assumes count data instead of relative abundances, we scaled the simulated data by
the median sequencing depth over all samples in the original dataset and rounded
to the nearest integer to obtain comparable counts.

• A Dirichlet regression model and subsequent significance test on the regression coef-
ficients, as implemented by Maier (2014). This model serves as a simple baseline
that does not respect feature interactions.

• CompDA (Ma et al., 2024), a recent DA testing method for compositional data,
respecting feature interactions via conditional dependency modeling.

Figure 4 summarizes the results for the simulation scenario with the original num-
ber of features (p = 11). Here, cosmoDA showed the overall best ability to recover the
true effects (Matthews’ correlation coefficient, Figure 4a), especially when the sample
size was larger and for the more abundant cell type T4 (see Figure E5). Importantly,
cosmoDA showed the lowest FDR value in all scenarios (Figure 4b). Although cosmoDA

was not able to control the FDR at the expected level of 0.05 in every scenario, the
methods without consideration of interactions (ANCOM-BC and Dirichlet) detected
more false positive features, with FDR levels averaging between 0.2 and 0.7 in most
scenarios. Surprisingly, CompDA did not achieve lower FDR values than ANCOM-
BC and performed worse than Dirichlet regression in all cases. We observed slightly
elevated FDR levels of cosmoDA in cases where the DA cell types were not detected,
resulting in FDR values of 1 where one feature was falsely discovered (see Figure E6).
While Dirichlet regression and ANCOM-BC struggled with FDR control in all scenar-
ios (see Figure E6), CompDA produced much higher FDR values for the abundant cell
type (T4). For smaller sample sizes (n = 100) and small effects, cosmoDA was not able
to consistently detect the differentially abundant features, resulting in lower power for
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these scenarios. With increasing sample size, the power of cosmoDA was on par with
the other methods (Figures 4c, E7).

In the large-dimensional case (p = 99), the performance of all methods decreased
in the small sample size scenario, while Matthews’ correlation coefficient was similar
to the case of p = 11 for larger sample sizes (Figures 5a, E11). Again, cosmoDA always
showed the lowest FDR, albeit with slightly elevated levels for n = 1000, and mean
FDR levels between 0.1 and 0.4 for n = 100 (Figure 5b). The FDR levels for cosmoDA
did not show a trend across feature rarity and effect size, while the other methods
were not able to produce average FDR levels below 0.5 for effects on rare pDC cells
(Figure E12). In terms of power, only ANCOM-BC and Dirichlet regression were
able to correctly detect some differentially abundant features for n = 100, while all
methods showed good power for larger sample sizes (Figure 5c). Breaking these results
down by cell type revealed a good power of ANCOM-BC and Dirichlet regression for
abundant features, while effects on rare features could not be reliably detected by
any method (Figure E13). The unsuitability of cosmoDA and CompDA for the case of
p = 99, n = 100 is not surprising, as both models need to estimate pairwise feature
interactions in the high-dimensional regime.
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Fig. 4 Performance comparison for recovering differentially abundant features across
different scenarios, p = 11. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).
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Fig. 5 Performance comparison for recovering differentially abundant features across
different scenarios, p = 99. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).
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4 Applications to single-cell and microbiome data

To showcase the DA testing capabilities of cosmoDA on real data, we considered two
compositional datasets: PBMC abundances derived from scRNA-seq data of SLE
patients (as used in the semi-synthetic benchmarks Perez et al. (2022)) and infant gut
microbiome data from 16S rRNA sequencing (Yatsunenko et al., 2012). Apart from
comparing the empirical results with other state-of-the-art methods, we also evaluated
the impact of power transformations (a = b = ϕ ̸= 0) on the downstream DA results.

4.1 DA analysis of cell type compositions in patients with
systemic lupus erythematosus

We used the scRNA-Seq-derived PBMC data from Perez et al. (2022) (n = 352, p = 11,
see Section 3.2) to estimate differences in cell type composition between subjects with
systemic lupus erythematosus (SLE) (n=208) and healthy controls (n=144).

To tune the parameters in cosmoDA, we considered the power values ϕ =
(0.01, 0.02, 0.03, . . . 0.99), as well as the log-log model (ϕ = 0) for comparison. We set
the range of λ1 values between 1.5 and 10−7 to ensure full coverage of the range of sup-
ports ofK for every value of ϕ. As before, we used NK cells as the reference cell type for
cosmoDA and selected the regularization strength via 5-fold cross-validation with the
1SE rule. We used ANCOM-BC, Dirichlet regression, and CompDA for comparison.

We first investigated the influence of our power value tuning schemes for DA anal-
ysis. The Procrustes correlation analysis showed that the ALR-transformed PBMC
data (with zeros replaced by a pseudocount of 0.5) and the power-transformed data
had the highest alignment for a power of ϕ∗ = 0.22 (see Figure 6a). To investigate
the impact of zero replacement and the power transform on differential abundance,
we also compared the DA testing results of cosmoDA for all values of ϕ with and with-
out zero entries (Figure 6c, d). Due to the low number of zeroes (4.5%), the impact
of zero imputation was negligible for this dataset, making the adjusted p-values with
and without zero imputation almost identical. Below a value of 0.8, the exponent of
the power transformation only impacted the differential abundance of CD14+ classi-
cal monocytes (cM). For higher exponents, almost all cell types showed no differential
abundance. Comparing the results of cosmoDA with ANCOM-BC, Dirichlet regression,
and CompDA (all implemented as described in section 3.2) showed that all meth-
ods selected different sets of differentially abundant cell types (Figure 6b). CompDA
produced the most conservative results, only finding four DA cell types at an FDR
level of 0.05. On the other hand, Dirichlet regression found all cell types to be dif-
ferentially abundant. Interestingly, cosmoDA was the only method that did not select
classical monocytes as differentially abundant (Figure 6b). The latter finding is in
agreement with a control experiment performed by Perez et al. (2022) that found
absolute monocyte abundances to be not differentially abundant in SLE patients.

4.2 DA analysis in microbiome data

To showcase the suitability of cosmoDA for microbial 16S rRNA sequencing, we used
gut microbiome data from infants in Malawi and the United States (Yatsunenko et al.,
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Fig. 6 Differential abundance testing with cosmoDA on the lupus dataset. (a) Procrustes
correlation between power transformation and ALR transformation with zero replacement. The yellow
line (ϕ∗ = 0.22) indicates the maximal Procrustes correlation. (b) Boxplot of relative abundance
data without zero replacement. The colored stars indicate the significance level for each method (*:
padj < 0.05; **: padj < 0.01; ***: padj < 0.001). Differential abundance results on NK cells (reference
in cosmoDA) are omitted. (c) Adjusted p-values for testing differential abundance with cosmoDA on
zero-replaced data with different power transformations. Red entries denote differential abundance
at a level of α = 0.05, blue entries denote no differential abundance. The yellow box highlights
the adjusted p-values for ϕ∗ determined in a. (d) Same as c, but using the raw data without zero
replacement.

2012). We followed the pre-processing in the original ANCOM-BC study Lin and
Peddada (2020) and aggregated the data to the Phylum level. We selected all sam-
ples from subjects aged less than two years old in Malawi and the United States.
Following Lin and Peddada (2020), we next discarded all phyla where more than
90% of samples contained zero entries, resulting in n = 97 samples of p = 13
phyla. We selected Bacteroidetes as the reference phylum and applied cosmoDA with
ϕ = (0.01, 0.02, 0.03, . . . 0.99), and the log-log model (ϕ = 0) to the relative abundances
with and without zero replacement. The range of values for λ1 was set to

[
10−12, 1.5

]
,

and we used 5-fold cross-validation with the 1SE rule to select λ1 for each value of ϕ.
For this dataset, our power selection scheme identified ϕ∗ = 0.13 to result in the

best Procrustes alignment (see Figure 7a). The larger proportion of zero entries in this
dataset (28.6%) caused more differences in downstream DA testing results, both on
the original and zero-imputed data (Figure 7c, d). While the DA pattern of taxa with
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no zero entries (Firmicutes, Actinobacteria, Tenericutes, and Proteobacteria) was not
impacted by zero imputation, the phyla with at least 20% zero entries (Cyanobacte-
ria, Elusimicrobia, Euryarchaeota, Lentispherae, Spirochaetes, and TM7) were deemed
differentially abundant at a smaller power values. Similar to the analysis of the scRNA-
seq data, the four DA methods produced different sets of DA taxa at an FDR level
of 0.05 (Figure 7b). Dirichlet regression and CompDA seemed to be only sensitive to
taxa with high average abundance, while ANCOM-BC and cosmoDA were able to also
detect differential abundance in rare phyla. The set of DA taxa discovered by cosmoDA

at ϕ∗ = 0.13 on the data with zero entries was smaller than the set discovered on
the same dataset by ANCOM-BC. Nevertheless, cosmoDA found multiple phyla that
are associated with rural lifestyles (Elusimicrobia, Euryarchaeota, Spirochaetes) to be
increased in infants from Malawi (Herlemann et al., 2007; Obregon-Tito et al., 2015).
Notably, the ANCOM-BC algorithm involves the replacement of zeros by a small pseu-
docount (Lin and Peddada, 2020). Indeed, the set of DA phyla discovered by cosmoDA

on the zero-replaced data with the exponent ϕ∗ = 0.13 (Figure 7c) almost perfectly
matched the DA phyla found by ANCOM-BC (except Firmicutes and Proteobacte-
ria). Overall, this confirms that replacement of zero entries in microbial abundance
data has significant impact on differential abundance.
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Fig. 7 Differential abundance testing (US vs. Malawi) with cosmoDA on infants (age < 2
years) in the the human gut dataset. (a) Procrustes correlation between power transformation
and ALR transformation with zero replacement. The yellow line (ϕ∗ = 0.13) indicates the maxi-
mal Procrustes correlation. (b) Boxplot of relative abundance data without zero replacement. The
colored stars indicate the significance level for each method (*: padj < 0.05; **: padj < 0.01; ***:
padj < 0.001). Differential abundance results on Bacteroidetes (reference in cosmoDA) are omitted.
(c) Adjusted p-values for testing differential abundance with cosmoDA on zero-replaced data with dif-
ferent power transformations. Red entries denote differential abundance at a level of α = 0.05, blue
entries denote no differential abundance. The yellow box highlights the adjusted p-values for ϕ∗ deter-
mined in a. (d) Same as c, but using the raw data without zero replacement.
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5 Conclusion

Tissues and bacterial communities are complex biological environments, governed by
interactions between individual cell types or microbial taxa. The prevailing high-
throughput sequencing (HTS) data sets probing these complex mixtures are often
compositional in nature. Statistical generative modeling as well as differential abun-
dance testing schemes for such compositional datasets can therefore suffer from
inaccuracies if interactions between cells or microbes are not considered in the analy-
sis. Extending the class of a-b power interaction models (Yu et al., 2024) by a linear
effect on the location vector, our new method cosmoDA allows to accurately model
HTS data with pairwise feature interactions in the presence of covariate information.
The covariate formulation in cosmoDA also seamlessly integrates into the generalized
score matching optimization framework (Hyvärinen, 2005; Lin et al., 2016; Yu et al.,
2022), facilitating fast and accurate parameter inference. L1 regularization on the
interaction matrix further avoids model complexity explosion and allows to select par-
simonious interaction patterns. Compared to the a-b power interaction model without
covariates from Yu et al. (2024), the addition of a covariate did not reduce its abil-
ity to detect significant feature interactions in our synthetic data simulations. Both
the covariate-less and covariate-extended a-b power interaction models outperformed
other established procedures for identifying sparse interactions in compositional HTS
data when the sample size was sufficiently large.

In the presence of a binary condition, testing for significance of the covariate-related
parameters in the location vector acts as a form of differential abundance testing. Here,
the parallel estimation of feature interactions helps to avoid false positive detections
which are only indirectly related to the condition. In our realistic simulation experi-
ments, cosmoDA was the only method to approximately control the false discovery rate
in the presence of feature interactions, while no other tested method could distinguish
between direct and indirect compositional changes. cosmoDA showed reduced power
when the sample size was small, but was on par with methods like ANCOM-BC (Lin
and Peddada, 2020) for larger numbers of observations. One exception where cosmoDA
was not able to adequately control the FDR was for misspecified models with more
features than samples. We further demonstrated the ability of cosmoDA to find biolog-
ically meaningful differential abundances on two experimental datasets from human
single-cell RNA sequencing and microbiome 16S rRNA sequencing.

The use of power transformations instead of the logarithm in a-b power interaction
models allows to keep zero measurements in the data as-is, avoiding distortions caused
by imputation of these values. Through a small adjustment in the score matching opti-
mizer, we were able to approximate the log-transformation for exponents approaching
zero. Applying cosmoDA to real-world single-cell and microbiome datasets, we dis-
covered that zero replacement and the exponent of the power transformation had a
considerable impact on downstream DA results in data with excess zeros (Gloor et al.,
2017). We further demonstrated that selecting an exponent for the power transfor-
mation that approximates the data geometry after an ALR transformation generally
produces sensible differential abundance results.

While cosmoDA successfully tackles multiple challenges in generative modeling and
differential abundance testing, it also has some limitations. Currently, cosmoDA can
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only accommodate a single binary or continuous covariate. Extending the linear model
formulation would allow to model more complex scenarios and adjust for confounders
in DA testing. For this, the score matching estimator would also have to be extended
to multiple covariates. The implementation of such a flexible model could be simplified
by using automatic differentiation for determining the elements of Γ and g (Kassel
et al., 2024). In addition, we believe that approximation of the logarithm for small
exponents can be solved more elegantly by changing the general definition of a-b power
interaction models to utilize a true Box-Cox transformation rather than using our
proposed adjustments in the score matching optimizer. Estimation of our model also
relies on selecting a good reference, which is profiled out in the model formulation.
Looping over multiple references and averaging the results, as described by Yu et al.
(2024), could avoid this dependency at the cost of computational efficiency.

While we empirically showed the feasibility of cosmoDA, we did not provide any
guarantees for goodness of fit and convergence. A formal reevaluation and extension of
the theoretical considerations provided by Yu et al. (2024) would give more justification
to our approach.

Overall, we believe that cosmoDA with its abilities to include feature interac-
tions and seamless handling of excess zeros represents a valuable addition to the
growing family of differential abundance testing methods. A Python implementa-
tion of cosmoDA and the power interaction model without covariates is available at
https://github.com/bio-datascience/cosmoDA.
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Appendix A Connection between a-b power
interaction models and PPI models

The class of polynomially tilted pairwise interaction (PPI) models, introduced by
Scealy and Wood (2022), is another class of flexible distributions with feature
interactions on the simplex. This class includes distributions of the form

pA∗,ν(x) ∝

(
p∏

i=1

xνi
i

)
exp(xTA∗x)

with ν ≻ −1 ∈ Rp, and A∗ ∈ Rp×p symmetric with A∗1p = 0. Through(∏p
i=1 x

νi
i

)
= exp(νT log(x)), it is easy to see that this class of distributions repre-

sents a special case of a-b power interaction models (Eq. 2) with a = 1 and b = 0.

Profiling out the last coordinate, i.e. xp = 1−
∑p−1

i=1 xi, leads to an alternative formu-
lation (Scealy et al., 2024), with parameters ν ≻ −1 ∈ Rp, AL ∈ R(p−1)×(p−1), and
cL ∈ R(p−1):

pAL,cL,ν(x) ∝

(
p∏

i=1

xνi
i

)
exp(xTALx+ cTLx).

In particular, the transition between the two forms can be achieved by splitting

off the last row and column of A∗ =

(
A∗

L A∗
p

A∗
p
T

A∗
pp

)
. Then, ALi,j = A∗

i,j − 2A∗
pi
+A∗

pp

and cLi = 2(A∗
pi
−A∗

pp). Since A∗ has one additional parameter, assume A∗
pp = 0 for

the reverse transformation. Then, A∗
pi

= 1
2cLi, and A∗

Li,j = ALi,j + cLi.
Applying the equivalent transformations to an a-b power interaction model with

a = 1 can help with parameter interpretation, as the matrix AL usually has full rank.

Appendix B Derivation of the parameters in the
quadratic form of the score matching
optimizer

This section details the derivation of the parameters Γ and g in the quadratic for-
mulation of the score matching loss (Eq. 8) and explains their block structure shown
in Eq. 11. The elements of g can be directly derived from the second derivative of
log p(x) (Eq. 10):

gK,j ≡
1

n

n∑
i=1

[
∂j h̃j

(
X(i)

)
X

(i)
j

a−1
+ (a− 1)h̃j

(
X(i)

)
X

(i)
j
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X(i)a

+ ah̃j

(
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)
X

(i)
j
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X
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)
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Further, the elements of Γ follow from the first derivative of log p(x) (Eq. 9) and
have the same structure as in Yu et al. (2024):

ΓK ≡


ΓK,1 0 · · · 0 ΓK,(1,p)

0 ΓK,2 · · · 0 ΓK,(2,p)

...
...

. . .
...

...
0 0 · · · ΓK,p−1 ΓK,(p−1,p)

Γ⊤
K,(1,p) Γ⊤

K,(2,p) · · · Γ
⊤
K,(p−1,p) ΓK,p

 ∈ Rp2×p2

,

with each block of size p× p, and

ΓK,ηi ≡


γK,ηi,1 0 · · · 0 γK,ηi,(1,p)

0 γK,ηi,2 · · · 0 γK,ηi,(2,p)

...
...

. . .
...

...
0 0 · · · γK,ηi,p−1 γK,ηi,(p−1,p)

γK,ηi,(p,1) γK,ηi,(p,2) · · · γK,ηi,(p,p−1) γK,ηi,p

 ∈ Rp2×p for i ∈ {1, 2},

with each block a vector of size p, and

Γηi ≡


γηi,1 0 · · · 0 γηi,(1,p)

0 γηi,2 · · · 0 γηi,(2,p)

...
...

. . .
...

...
0 0 · · · γηi,p−1 γηi,(p−1,p)

γηi,(1,p) γηi,(2,p) · · · γηi,(p−1,p) γηi,p

 ∈ Rp×p for i ∈ {1, 2},
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, and

Γη0,η1 ≡


γη0,η1,1 0 · · · 0 γη0,η1,(1,p)
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. . .
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0 0 · · · γη0,η1,p−1 γη0,η1,(p−1,p)

γη0,η1,(1,p) γη0,η1,(2,p) · · · γη0,η1,(p−1,p) γη0,η1,p

 ∈ Rp×p.

These blocks have the following specific forms. For j = 1, . . . , p− 1,
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Appendix C Scaling score matching elements to
approximate Box-Cox transformations

As described in Section 2.4.2, the power transformation used for a-b power interaction
models (Eqs. 4 and 2) bears striking resemblance to the Box-Cox transformation
1
ϕ (x

ϕ − 1). Both transformations are not equivalent though due to the subtraction
of 1 in the Box-Cox transformation. This difference causes the a-b power interaction
transformation to lose one key property of the Box-Cox transformation - its asymptotic
approximation of the logarithm as ϕ approaches 0.
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Looking at the density of the covariate-extended a-b power interaction model makes
this disparity clear:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
(η0 + yη1)

⊤xb

)
For the terms concerning η0 and η1, the subtraction of 1 in the Box-Cox trans-

formation is not dependent on x and can therefore be absorbed into the normalizing
constant. For the interaction term, replacing xa with the Box-Cox transformation in
Eqs. 2 or 4 would introduce a scaling factor of order 1/a2 instead of 1/a, leading to a
discontinuity of the estimated K when approaching the log-log model, for which the
convention 1

2a ≡ 1 is used (Yu et al., 2024).
We counteract this effect by introducing scaling factors of 1/a and 1/a2 on the

components of Γ and g (Eq. 11), based on the matrix multiplication θ⊤Γ(x)θ from
Eq. 8. In particular, we scale ΓK by a factor of 1

a2 and ΓK,η0 ,ΓK,η1 , and gK by a
factor of 1

a each. This leads to a smooth transition in the estimation of K when ϕ→ 0,
and also holds for general a-b power interaction models without covariates (Yu et al.,
2024).

We showcase the effectiveness of our scaling approach with an example on the
scRNA-seq data of SLE patients and healthy controls Perez et al. (2022). For sim-
plicity, we estimate the whole dataset through the covariate-less a-b power interaction
model without differentiating between the two groups, use no regularization on the off-
diagonal entries ofK, and always replace zeros with a value of 0.5. Without the scaling
factor, the pattern of the estimated K approaches the log-solution (ϕ = 0), but the
scale of the entries is not the same (Figure E14, left column). On the other hand, the
entries of η approach the log-solution also in magnitude (Figure E14, right column).
For increasing values of ϕ, both the pattern and magnitude of K and η gradually
diverge, as the power transformation gradually distorts the composition differently.

The median entry of the ratio Kϕ=0/Kϕ=ϕ′ also does not approach 1 as ϕ′ → 0
(Figure E15, bottom right). Looking at the components of Γ and g, one can see that
the median entry of the above ratio follows a log-linear trend for larger values of ϕ, but
not for smaller exponents if the component is associated with K (Figure E15, other
panels). The scaling factors introduced above correct this trend, such that the ratio
is log-linear across the full spectrum of ϕ. This causes the estimated K to approach
the solution for ϕ = 0 in magnitude (Figure E15, bottom right) without impacting
the estimated interaction pattern (Figure E14, middle column) or the estimation of η
(Figure E14, right column).

When combining regularization and power transforms, the dependency between ϕ
and the scale of entries in K will lead to different optimal regularization strengths
for different exponents (Figure E16a). In fact, a larger exponent and therefore larger
scale of K will require smaller values of λ1 to cover the whole range between K with
full support and a diagonal K (Figure E16b). Therefore, the range of values for λ1
should always be adapted to the current data and power transform.
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Appendix D Testing for differential abundance
without feature interactions

We also compared the methods on simulated data without feature interactions to show
the suitability of cosmoDA if no significant feature associations are present. To this end,
we applied the a-b power model solution with a = b = 0 and λ1 = 2 to the dataset
from Perez et al. (2022), resulting in ground truth parameters of KB = 011×11, and
η0,B as shown in Figure E3. We used the same setup as before to select differentially
abundant cell types and effect sizes and again chose n = 100 and n = 1000, simulating
five replicates for each of the 30 scenarios as described above.

If no significant feature interactions were simulated, cosmoDA and CompDA showed
similar overall performance as before, while the MCC of ANCOM-BC and Dirichlet
regression significantly improved (Figures D1a, E8). This improvement was due to a
reduction in falsely discovered effects by these methods (Figure D1a), which shows that
the high FDR of ANCOM-BC and Dirichlet regression in the previous simulation were
caused by secondary effects due to feature interactions. In terms of power, all methods
showed similar strength as before (Figures D1c, E10). Nevertheless, cosmoDA was the
only model to consistently produce a FDR close to the nominal level, while CompDA
was not able to avoid false discoveries if the effect was placed on the abundant cell
type T4 (Figure E9). The superior performance of cosmoDA in this case was due to
the fact the the data was simulated by an a-b power interaction model, which is not
used by the other methods.
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Fig. D1 Performance comparison for recovering differentially abundant features across
different scenarios, K = 0. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).

Appendix E Supplementary Figures
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Fig. E2 Interaction matrices used for data generation in the benchmark testing recovery
of K (Section 3.1). (a) n = 80, (b) n = 1000.

Fig. E3 Data generation parameters used for the differential abundance testing bench-
mark (Section 3.2), K = 0. (a) Interaction matrix (KB). (b) Location vector (η0,B).
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Fig. E4 Data generation parameters used for the differential abundance testing bench-
mark (Section 3.2), p = 99. (a) Interaction matrix (KB). (b) Location vector (η0,B).

Fig. E5 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), p = 11.
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Fig. E6 Detailed breakdown of false discovery rate for the differential abundance testing
benchmark (Section 3.2), p = 11. The dashed lines denote the nominal FDR for all methods.

Fig. E7 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), p = 11.
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Fig. E8 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), K = 0.

Fig. E9 Detailed breakdown of false discovery rate for the differential abundance testing
benchmark (Section 3.2), K = 0. The dashed lines denote the nominal FDR for all methods.
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Fig. E10 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), K = 0.

Fig. E11 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), p = 99.

42

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.627006doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.05.627006
http://creativecommons.org/licenses/by-nc/4.0/


Fig. E12 Detailed breakdown of false discovery rate for the differential abundance test-
ing benchmark (Section 3.2), p = 99. The dashed lines denote the nominal FDR for all methods.

Fig. E13 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), p = 99.
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Fig. E14 Impact of scaling Γ and g on the estimation of K and η. Results shown for the
SLA scRNA-seq data Perez et al. (2022). Rows show selected values of the exponent ϕ in the power
transformation. Left column: Values of K without scaling. Middle column: Values of K with scaling.
Right column: Values of η with and without scaling.
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Fig. E15 Impact of scaling factor for power transforms on the score matching param-
eters Γ and g and the interaction matrix K. All plots except bottom right show the median
entry of Eϕ=0/Eϕ=ϕ′ for E being one of the score matching elements in Eq. 11. Bottom right: Same
quantity for the estimated interaction matrix K.
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Fig. E16 Relationship between power and regularization strength for the SLA scRNA-
seq data Perez et al. (2022). (a) Value of λ1 selected through cross validation in relation to
exponent ϕ of the power transform. (b) Number of nonzero entries in K for every λ1 and ϕ.
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