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Abstract

Background: Irritable Bowel Syndrome (IBS) is a chronic functional bowel disorder causing
abdominal discomfort, as well as transit deregulation with constipation and/or diarrhea. The
pathophysiology of IBS is poorly understood and believed to be multifactorial. The role of gut
microbiota in IBS has been investigated in several case-control studies, in particular via 16S rRNA
amplicon sequencing surveys. These studies, however, have not yet led to a consistent picture of
significant changes in gut microbial compositions across health and disease. One key bottleneck is
the modest cohort sizes of most individual studies and a high diversity of experimental,
bioinformatics, and statistical analysis approaches across studies.

Results: We address these shortcomings by presenting MetaIBS, an open-access data repository
and associated meta-analysis workflow of thirteen 16S rRNA amplicon datasets comprising both
fecal matter and sigmoid biopsy samples spanning ⇠ 2,500 IBS and healthy individuals. MetaIBS
includes a tailored computational framework that (i) enables coherent de novo processing and
taxonomic assignments of the raw 16S rRNA amplicon reads across experimental protocols and
sequencing technologies, and (ii) statistical workflows for visualization and analysis at di↵erent
taxonomic ranks and data granularity. Our statistical meta-analysis shows that popular high-level
microbiome summary statistics, including Firmicutes/Bacteroidota ratios or diversity indices, are
insu�cient for reliable discrimination between IBS patients and healthy controls. Fine-grained
multi-method di↵erential abundance and classification analysis, however, can identify sets of
di↵erentially abundant taxa that replicate across multiple datasets, including Coprococcus
eutactus and Alistipes finegoldii.

Conclusions: MetaIBS provides a curated and reproducible data and (meta-)analysis resource for
amplicon-based IBS research at unprecedented scale. MetaIBS allows assessing the heterogeneity
of IBS cohorts across multiple experimental protocols, sample types, and IBS phenotypes. Our
framework will likely contribute to more coherent insights into the role of the microbiome in IBS
and the discovery of reliable microbial IBS biomarkers for follow-up functional and translational
studies.
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Background
Irritable Bowel Syndrome (IBS) is a chronic intestinal disorder a↵ecting approximately 10-25% of

the general population worldwide. It is characterized by (1) frequent abdominal pain, defined by

one or more days per week for the previous three months; (2) an absence of alarming signs such

as gastrointestinal bleeding, palpable abdominal mass or personal history that may suggest the

presence of colorectal cancer (CRC) or inflammatory bowel disease (IBD); and (3) at least two out

of these other symptoms: pain during defecation, change in stool frequency and/or change in stool

morphology [1, 2, 3, 4, 5]. Its diagnosis relies on the Rome criteria (currently Rome IV), previously

enumerated, defining it into four subtypes: constipation (IBS-C), diarrhea (IBS-D), mixed (IBS-M)

or unclassified [1]. While IBS is a chronic syndrome impairing quality of life, it remains poorly

understood with no curative treatment to date [1], thus requiring continued concerted scientific

investigations into this peculiar idiopathic disease.

The roots of IBS pathophysiology are likely multifactorial, with reported alterations in gastroin-

testinal motility, visceral sensitivity, gut inflammation, and intestinal permeability [1, 4, 6]. All

these elements can be modulated by the microbiome residing in the gut [6], and with increasing

evidence of its role in other human diseases [7], IBS is strongly suspected to be related to some

dysbiosis of the gut microbiota. Indeed, experimental systems with fecal transplantation of gut mi-

crobes from IBS patients to germ-free mice demonstrated alterations in the gut function, notably

in the gastrointestinal transit, the permeability of the intestinal barrier, and the immune system

homeostasis [8, 9]. In addition, acute gastroenteritis infections increase the risk of developing IBS

by 4.2-fold in the year following the infection [10, 5], a phenomenon known as post-infectious IBS.

Taken together, cumulative reports suggest a role of the gut microbiome in triggering and/or sus-

taining IBS symptoms. However, a defining gut microbial feature responsible for IBS has yet to be

elucidated [1, 11, 12].

The gut microbiota is a complex ecosystem of various microorganisms, including yeast, proto-

zoa, archaea, viruses, and predominantly bacteria [7]. Despite numerous studies comparing the

gut microbiome composition in IBS patients and healthy controls, few of them reported consistent

results [12, 11, 6]. Some recurrent evidence of dysbiosis include alterations in the Firmicutes to Bac-

teroidota (F/B) ratio [13, 14, 15, 16], and in the relative abundance of members of the Clostridiales

order [14, 15, 2, 17, 18], and the Ruminococcaceae [14, 19, 17, 20, 21, 22, 23], Streptococcaceae

[21, 15, 13, 24, 25], or Enterobacteriaceae [22, 23, 17, 26, 27] families. Although these microbial

taxa are regularly highlighted in case-control studies, there is no consensus on whether they are

increased or decreased in IBS [11, 12, 28].

These inconsistencies can be explained first and foremost by limited cohort sizes (many studies

have 50 or fewer IBS patients), as well as the large heterogeneity in enrollment criteria, geographi-

cal localization, and thus, dietary habits. Moreover, di↵erences in experimental protocols, amplified

variable regions and sequencing technologies may have influenced the microbial species detected.

Finally, in the case of analysis of 16S rRNA sequencing data, studies have employed diverse bioinfor-

matics pipelines (e.g., Qiime, Mothur, Usearch, Uparse) [29, 30, 31, 32], reference databases for the
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taxonomic alignment, such as, e.g., Silva, Greengenes, Ribosomal Database Project) [33, 34, 35, 36],

and statistical analysis approaches, all of which may further contribute to inconsistencies. There-

fore, comparisons between studies or interpretation of gut microbial alterations in IBS patients are

limited.

To overcome the limitations of small cohort sizes and controversial findings due to varying pro-

tocols and bioinformatics pipelines, we introduce a standardized meta analysis of 16S rRNA se-

quencing data across thirteen IBS studies, called MetaIBS, enabling consistent comparison of gut

microbiome compositions in IBS patients versus healthy controls. To this end, we inferred Amplicon

Sequence Variants (ASVs) de novo from raw 16S rRNA read sequences using a standardized bioin-

formatic pipeline with a single reference database, thus enabling merging and cross-comparison of

all datasets. All data files and associated fully documented and reproducible processing scripts are

publicly available at https://github.com/bio-datascience/MetaIBS, thus providing a central

resource for the scientific community to gain insights into the role of the gut microbiota in IBS

pathophysiology. To illustrate the capabilities of this resource, we performed statistical analysis of

a total of 2651 samples from 2356 individuals across ⇠80,000 ASVs, using state-of-the-art log-ratio,

↵-diversity, dimensionality reduction, di↵erential abundance, and regression analysis techniques.

We hypothesized that this approach would reduce inconsistencies across studies, and, ultimately,

reveal insights on the role of the gut microbiome in IBS patients.

We found that high-level microbiome composition descriptors, such as F/B ratios or ↵-diversity,

are inconsistent for IBS diagnosis. However, fine-grained multi-method di↵erential abundance test-

ing revealed 38 microbial genera that were di↵erentially abundant in at least three datasets, most

of which belonged to the Ruminococcaceae or Lachnospiraceae families (Clostridia class) and were

decreased in IBS samples. MetaIBS also enabled cross-study identification of eight di↵erentially

abundant taxa on the strain level by merging two datasets that amplified the same variable region

of the 16S rRNA gene and contained subsets of identical ASVs.

Results
Data collection and pre-processing

We collected datasets of 16S ribosomal RNA (16S rRNA) sequencing studies and analyzed the

data with a standardized pipeline. We included published case-control studies that compared

the microbiome composition of healthy and IBS individuals using 16S rRNA sequencing. Studies

in children and interventional clinical studies were excluded. We identified 41 studies matching

our inclusion criteria, as shown in Figure 1, thirteen of which either had their raw data publicly

available or were kindly shared after inquiry by the authors [15]. Details on the included datasets

are summarized in Table 1. We will refer to specific datasets by the name of the first author of the

respective study (Table 1). Individuals were all diagnosed with IBS by a physician based on Rome III

or Rome IV criteria. The Rome IV criteria have a stricter definition of abdominal pain frequency;

however, 85% of patients with Rome III criteria also fulfill the Rome IV criteria [37]. From the

American Gut Project (AGP) [38], we only included samples from individuals who reported being
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Figure 1 Overview of the meta-analysis. (A) Flowchart summarizing the identification of datasets that used 16S
rRNA sequencing to compare microbiome composition in healthy versus IBS (case-control studies), then the
re-processing of raw fastq files from the included datasets, followed by the final number of samples that passed the
filtering steps. (B) Taxonomic tree representing the microbial genera detected in all samples. The outer circles
represent the number of ASVs across all datasets that were found to belong to a specific genus (blue gradient); the
number of datasets in which a specific genus was present (yellow gradient); and whether each genus was found in
only in fecal samples, sigmoid colon biopsy samples, or both (grey scale).

diagnosed by a medical professional (see Materials & Methods). Hence, we ensured that the IBS

diagnosis criteria across datasets were comparable. In datasets with available covariates, we verified

that age, BMI, and gender distributions were comparable between healthy and IBS individuals

(Supplementary Table S1). The Lo Presti dataset [39] had significantly more women in the IBS

group, and in the Zhu dataset [40], IBS individuals were significantly older than their healthy

counterparts (Supplementary Table S1). In all other datasets with available covariates, cases and

controls had comparable demographic characteristics.

MetaIBS comprises data from three sequencing technologies, including Illumina MiSeq [41, 19,

23, 28, 24, 40, 42, 38], 454 pyrosequencing [13, 39, 25], and Ion Torrent [15, 14] (see Table 1). For all

samples, we inferred de novo amplicon sequence variants (ASVs) from raw FASTQ files and assigned

taxonomy with the Silva reference database [33, 34]. More details on the standardized pre-processing

pipeline and the number of samples that passed quality control can be found in Supplementary Ta-

bles S2 and S4, as well as the code repository at https://github.com/bio-datascience/MetaIBS.
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Table 1 Characteristics of included datasets

Studies Country # samples ana-
lyzed (HC/IBS)

IBS diagnosis DNA isolation protocol Sequencing platform Variable region
(primers)

Reference

Labus et al., 2017 USA 23/29 Rome III PowerSoil Kit (MO BIO) 454 pyrosequencing V3-V5 (357F/926R) [13]

Lo Presti et al., 2019 Italy 34/23 Rome IV DNA Stool Mini Kit (QIAGEN) 454 pyrosequencing V1-V3 (28F/519R) [39]

Ringel-Kulka et al., 2015 USA 75 Rome III Mechanical disruption, phe-
nol/chloroform extraction, alcohol
precipitation

454 pyrosequencing V1-V2 (8F/357R) [25]

AGP, 2021 USA 594/589 N/A PowerSoil Kit (QIAGEN) Illumina MiSeq V4 (515F/806R) [38]

Liu et al., 2020 China 44/84 IBS-D Rome IV E.Z.N.A. Soil DNA Kit (Omega Bio-
tek)

Illumina MiSeq V3-V4 (338F/806R) [41]

Pozuelo et al., 2015 Spain 88/185 Rome III Mechanical disruption with beads, al-
cohol precipitation

Illumina MiSeq V4 (515F/806R) [19]

Fukui et al., 2020 Japan 26/84 Rome III GENE PREP STAR PI-480 (Kurabo
Industries)

Illumina MiSeq V1-V2 (27F/338R) [23]

Hugerth et al., 2020 Sweden 404/121 Rome IV ZR-96 Genomic DNA MagPrep
(Zymo Research)

Illumina MiSeq V3-V4 (341F/805R) [28]

Mars et al., 2020 USA 24/45 Rome III PowerSoil Kit (QIAGEN) Illumina MiSeq V4 (515F/806R) [24]

Zhu et al., 2019 China 14/15 Rome III PowerSoil Kit (MO BIO) Illumina MiSeq V4 (515F/806R) [40]

Zhuang et al., 2018 China 10/20 IBS-D Rome III PowerFecal Kit (MO BIO) Illumina MiSeq V3-V4 (338F/806R) [42]

Nagel et al., 2016 Australia 15/15 IBS-D Rome III DNA Stool Mini Kit (QIAGEN) Ion Torrent V4 (515F/806R) [15]

Zeber-Lubecka et al., 2016 Poland 17/73 Rome III DNA Stool Mini Kit (QIAGEN) Ion Torrent Ion 16STM Metage-
nomics Kit (V2-4-8,
V3-6, V7-9)

[14]
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In total, 79,943 ASVs were detected across 2,651 samples, with 2,220 stool samples and 431 biopsy

samples obtained from the sigmoid colon mucosa (Fig. 1A). These ASVs belonged to 48 phyla and

973 known genera (see Fig. 1B), two thirds of which were detected in only one dataset. Genera were

almost exclusively found either in stool samples only, or in both stool and sigmoid colon biopsy

samples (Fig. 1B). Biopsy samples exhibited a higher proportion of Firmicutes (Supplementary Fig.

S2B) compared to stool samples.

Overall, our standardized bioinformatics pipeline o↵ers a coherent processing of raw 16S rRNA se-

quencing reads into ASV and taxonomic tables. This sets the stage for robust downstream statistical

analyses to identify replicable microbial IBS biomarkers across datasets.

Firmicutes to Bacteroidota ratios and ↵-diversity are not always altered in IBS

The literature on gut microbiome compositions in IBS gives inconclusive results regarding changes

in high-level indicators such as ↵-diversity or changes in the ratios of the main bacterial phyla

Firmicutes, Bacteroidota, or Proteobacteria [11]. We thus examined first whether standardized

processing and analysis approaches allow to observe a consistent change in the commonly reported

Firmicutes to Bacteroidota (F/B) ratio and/or ↵-diversity across the MetaIBS datasets.

To get a first overview of the data, we examined the relative abundances of the top five most abun-

dant phyla across all samples (Supplementary Fig. S3). As expected, Firmicutes and Bacteroidota

represented the majority of the gut microbial composition in both fecal and sigmoid colon biopsy

samples, followed by Proteobacteria, Actinobacteriota, and Verrucomicrobiota (Supplementary Fig.

S3A,B). Sigmoid colon biopsy samples exhibited an overall higher abundance of Firmicutes and

lower abundance of Bacteroidota compared to fecal samples (Supplementary Fig. S3B,D). Despite

healthy and IBS samples showing high variability in their phylum composition (Supplementary Fig.

S3A), the average phylum composition in each disease group was stable across time points in both

fecal or sigmoid colon biopsy samples, as seen in the Pozuelo and Mars datasets, respectively (Sup-

plementary Fig. S3E). We did not observe any noticeable changes in the relative abundance of the

main phyla between healthy and IBS samples (Supplementary Fig. S3D), which is partly explained

by the high variability in observed phylum compositions (Supplementary Fig. S3A). The IBS- M

subgroup did show higher abundance of Bacteroidota compared to healthy controls (Supplementary

Fig. S3C). However, IBS subtypes were represented unequally across datasets, and the observed

IBS-M microbiome compositions largely come from the Pozuelo and Zeber-Lubecka datasets and

consist of fewer samples (n=67). Future datasets with more IBS-M samples are required to confirm

the relevance of this observation.

To get a quantitative asssessment of potential alterations in the main phyla, we compared the

F/B ratio between healthy and IBS individuals. In fecal samples, the F/B ratio was significantly

increased in two datasets, while decreased in two other datasets (Fig. 2A). The majority of datasets

had no significant change in the F/B ratio, both in fecal and sigmoid mucosa samples. In the Pozuelo

dataset, we observed a significant decrease in F/B ratio in the IBS group compared to the healthy

controls across both available time points (Fig. 2C). We next asked whether alterations in F/B ratio
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may be dependent on the IBS subtype (Fig. 2D). In fecal samples, we found a significant increase in

F/B ratio in IBS-D patients from the Labus dataset, but observed the opposite for the Pozuelo data.

Similarly, the Mars and Zeber-Lubecka datasets had a significant increase in F/B ratio in IBS-C

patients, while the LoPresti dataset showed a significant decrease. However, since the number of

samples in IBS subgroups is small (more than half of the subgroups have n < 15 samples), these

observations may be skewed by outliers. In the AGP dataset, where IBS subtypes were presumed

from available metadata on bowel movement quality and frequency, we observed no significant

change in F/B ratio between healthy controls and IBS patients reporting diarrhea or constipation

(Supplementary Fig. S5). Taken together, these observations show no consistent alteration in the

F/B ratio across cohorts, despite using a standardized bioinformatic and statistical framework.

Figure 2 Log ratio of Firmicutes:Bacteroidota absolute count in (A) all fecal samples, as shown for each dataset
separately (only 1st collection time point for Pozuelo); (B) all biopsies of sigmoid colon, as shown for each dataset
separately (only 1st collection time point for Mars); (C) samples from a first or second collection time point in the
Pozuelo and Mars datasets; (D) datasets with information on IBS subtype (constipation IBS-C, diarrhea IBS-D,
mixed IBS-M). Statistical significance determined by a two-way wilcoxon test (* p<0.05 ; ** p<0.01; *** p<0.001).

Next, we asked whether the ↵-diversity was altered in IBS samples, a heavily debated topic in the

literature [11, 12, 28]. In fecal samples, the Shannon index was significantly decreased in IBS patients
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in the Labus, Pozuelo, and Fukui datasets, but increased in the Zhu cohort (Supplementary Fig.

S4A). This was also the case when measuring the Simpson index, with the exception of the Labus

dataset, where we observed no significant change in ↵-diversity in IBS samples (Supplementary

Fig. S4B). When looking more specifically at IBS subtypes, the Labus and Pozuelo datasets showed

a significant decrease in ↵-diversity in IBS-C and in IBS-D patients, respectively, compared to

healthy controls (Supplementary Fig. S4C). The majority of datasets showed no changes in the gut

microbiome’s ↵-diversity between IBS patients and their healthy counterparts.

While previous works reported contradicting results on alterations of F/B ratio or ↵-diversity in

IBS patients, our standardized pipeline still could not resolve these inconsistencies across cohorts.

This suggests that these inconsistencies across studies are not due to the di↵erence in processing

and statistical methods, but may simply reflect that the F/B ratio and ↵- diversity are not defining

features of IBS.

Microbial composition is more a↵ected by sequencing technology than IBS status

To assess whether there exist apparent global IBS “microbiome signatures” across samples and

datasets, we next performed a host of unsupervised exploratory data analysis techniques includ-

ing principle coordinate analysis on individual datasets, and clustered heatmap visualization and

Uniform Manifold Approximation and Projection (UMAP) [43] on the entire MetaIBS corpus.

Since di↵erent variable regions of the 16S rRNA gene were amplified across studies, no globally

shared sets of ASVs were available (see, however, Fig. 5A for subsets of shared ASVs). To enable

cross-study analysis and prevent samples from clustering by dataset-specific ASVs, we first aggre-

gated taxa to the family level. Figure 3A shows a heatmap of all microbial family abundances that

were present in at least three MetaIBS datasets. We then computed pairwise Aitchison distances

[44] (i.e., Euclidean distances between log-ratios of microbial family compositions) between all sam-

ples and constructed a low-dimensional embedding of the microbial compositions using UMAP [43]

(Fig. 3B).

The heatmap of family relative abundance patterns revealed a clear patterning by sequencing

technology (in particular, 454 pyrosequencing vs others), and on a more fine-grained level, by

dataset (e.g., Liu vs others) (Fig. 3A). Disease status, on the other hand, did not induce apparent

large-scale abundance profile di↵erences within individual studies. We confirmed this behavior by

testing whether the compositional means of the abundant families were significantly di↵erent across

datasets and across disease status, respectively, using pairwise compositional mean equivalence

tests (see Methods)[45]. We confirmed that mean compositions across all pairs of datasets were

significantly di↵erent whereas, with respect to IBS status, only the Zhu, the Pozuelo, and the Fukui

datasets showed significant changes in compositional means.

Similarly, sigmoid colon biopsy samples showed no clear distinction in microbial families be-

tween healthy and IBS individuals, and samples clustered partially by dataset (Supplementary Fig.

S6A,B). This is also confirmed in the UMAP visualization. Whereas samples from the American

Gut Project (AGP) cover a large extent of the UMAP, all other datasets span distinct regions in the
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Figure 3 Sequencing technology biases microbial composition. (A) Heatmap of microbial families abundance in all
fecal samples. Only families present in at least 3 datasets are shown. Families are in rows, clustered with the ward
algorithm; samples are in columns, ordered by dataset and disease phenotype. Counts were normalized (sum per
sample is 1). (B) UMAP was run on log-ratios between microbial families in all fecal samples. Samples are colored by
dataset (top), disease phenotype (bottom left), or sequencing technology (bottom right). (A-B) All fecal samples
were plotted (n=2,220), including both collection time points in the Pozuelo dataset.

map (Fig. 3B, top panel). We observed no clear separation of IBS samples from the healthy ones

in the low-dimensional projections (Fig. 3B, lower left panel), even when looking more specifically

at IBS subtypes (Supplementary Fig. S6C). Rather, samples obtained by 454 pyrosequencing clus-

tered separately from other sequencing technologies (Fig. 3B, lower right panel). This suggests that,

despite using the same denoising scheme and reference database for taxonomic alignment of ASVs

in all datasets, observed microbial compositions are still highly dependent on the experimental

protocol and dataset, and that this e↵ect is greater than the healthy/IBS status of the host.

In order to eliminate experimental biases, we repeated our analysis in individual datasets with

large cohorts, notably AGP, Hugerth, and Pozuelo. Since we conducted the analysis separately

in each dataset, we did not need to aggregate taxa. We computed the Bray-Curtis dissimilarity

and visualized samples by Principle Coordinate Analysis (PCoA) [46]. Once again, healthy sam-

ples overlapped with IBS samples (Supplementary Fig. S7). Interestingly, in the Pozuelo dataset,

fecal samples from the same individual taken within a month’s interval showed large dissimilarities,

suggesting higher variability at lower taxonomic levels compared to the phylum composition (Sup-

plementary Fig. S3E). As expected, the first axis separates fecal and sigmoid colon biopsy samples

in the Hugerth dataset (Supplementary Fig. S7). Overall, this suggests that IBS patients do not

exhibit major alterations in their microbial communities, and that there exist no broad microbial

signatures associated with IBS.
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Taken together, the present exploratory data analysis revealed that (i) experimental protocols and

sequencing technology have a larger e↵ect on the observed microbial compositions than a host’s

pathophysiology and that (ii) exploratory data analysis of individual datasets with larger cohort

sizes did not reveal apparent shifts in community composition of IBS patients.

Di↵erential abundance testing reveals taxa associated with IBS across datasets

We next investigated whether we could consistently detect compositional shifts in subsets of mi-

crobial taxa in IBS patients across datasets. Specifically, we used three distinct state-of-the-art

statistical methods, ANCOM-BC [47], LinDA [48], and scCODA [49] to find di↵erentially abundant

(DA) taxa across the eleven datasets containing stool samples (Fig. 4A/B, Supplementary Fig. S8).

We analyzed taxa on phylum, class, order, family, and genus rank, respectively, and recorded both

how often the di↵erent methods agreed on DA taxa and how often DA taxa were identified across

datasets. Overall, scCODA identified the largest number of DA taxa irrespective of taxonomic ranks.

In general, all methods identified more DA taxa on lower taxonomic ranks. Figure 4D visualizes

all DA taxa found by scCODA on the taxonomic tree and reports how often a particular DA

taxon was identified across the eleven datasets. On the family level (Fig. 4A), Ruminococcaceae and

Lachnospiraceae were most often found to change in relative abundance, with scCODA finding a

credible change in seven datasets, while ANCOM-BC and LinDA determined a significant shift four

and two times, respectively. Furthermore, ten out of the 16 families that scCODA determined to

be di↵erentially abundant in more than two datasets belonged to the Firmicutes phylum.

On the genus level, Firmicutes made up an even larger share of DA taxa found in at least three

datasets (30 out of 38, Fig. 4B). We considered these taxa as “genera of interest”, as changes in

their abundance could possibly be associated with IBS. Faecalibacterium was the most consistently

detected DA genus where a change in relative abundance was detected in eight datasets by sc-

CODA, in five datasets by ANCOM-BC, and in three datasets by LinDA, respectively. This is

consistent with multiple other studies [50, 17, 23] that also observed changes in Faecalibacterium

abundance. DA genera that were detected in more than half of the datasets (by any of the methods

scCODA/ANCOM-BC/LinDA) include Agathobacter (7/4/3 DA datasets), Fusicatenibacter (6/4/4

DA datasets), Ruminococcus (6/4/3 DA datasets), Parabacteroides (6/3/1 DA datasets), Blautia

(6/1/1 DA datasets), Coprococcus (6/2/2 DA datasets), Alistipes (6/1/0 DA datasets), and Bac-

teroides (6/0/0 DA datasets), respectively (see also Fig. 4B). It is noteworthy that many of the

identified DA genera were also found in the original analyses of the respective datasets as well as

other IBS studies [11, 23, 51].

Next, we analyzed the direction of change (relative increase or decrease) in each dataset for the

38 genera of interest from Figure 4B. Figure 4C summarizes the direction of change across all

methods and datasets. We observed that the majority of genera were found to decrease in relative

abundance in IBS samples (indicated in blue in Fig. 4C). In particular, the genera Faecalibacterium,

Agathobacter, and Fusicatenibacter showed remarkable consistency in direction of change across

methods and datasets.
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Figure 4 Di↵erential abundance testing with three di↵erent methods reveals common trends in stool samples
across 11 di↵erent datasets. (A-B) Aggregation to family and genus levels shows consistency of di↵erential
abundance in subpopulations of the gut microbiome between healthy individuals and IBS patients. Only
families/genera that were determined as di↵erentially abundant by at least one method in at least three datasets are
shown. Colored boxes below the x-axis show the corresponding phylum for each family. (C) Heatmap of di↵erential
abundances on the genus level. Red boxes indicate a significant or credible increase for all three methods (scCODA,
ANCOM-BC, LinDA), blue boxes a decrease. Grey fields show that the genus was not present in any sample of the
respective dataset. The selection of genera is equal to the ones shown in (B). (D) Taxonomic tree including all genera
that are present in at least one dataset (stool samples only). Grey circles on the nodes and leaves indicate the number
of datasets that a taxon was di↵erentially abundant in, as determined by scCODA. The branch colors indicate the
phylum, tip labels denote the 38 genera from (B) that were found to be di↵erentially abundant in at least three
datasets.

The genera Flavonifractor, Lachnoclostridium, Intestinibacter, Prevotella and TM7x showed in-

creased relative abundance in IBS for a majority of datasets (indicated in red, in figure 4C). The

dataset from Zhu et al. [40] appears as an outlier, since all three methods determined many genera

to increase in relative abundance in IBS patients compared to healthy controls, contrary to a sig-

nificant decrease in other datasets. This observation likely stems from a sequencing bias, discovered

in the pre-processing of the raw 16S rRNA sequencing data where the forward primer (F515) was
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present at the end of reverse reads in IBS samples, but not in healthy samples. This led to disjoint

sets of ASVs in healthy and IBS samples, and this bias persisted in higher taxonomic ranks.

In general, the number of DA genera per dataset varied considerably, as summarized in Table

2. Two datasets (Lo Presti et al. [39], Zhuang et al. [42]) contained no DA taxa regardless of the

statistical method, while almost half of all genera were di↵erentially abundant when analyzing the

data from Zhu et al. using LinDA.

First author Total genera DA genera
(fraction)

ANCOM-BC LinDA scCODA

Labus 91 5 (0.055) 0 (0.000) 7 (0.077)
LoPresti 90 0 (0.000) 0 (0.000) 0 (0.000)
AGP 620 16 (0.026) 20 (0.032) 197 (0.318)
Liu 698 105 (0.150) 42 (0.060) 54 (0.077)
Pozuelo 309 4 (0.013) 6 (0.019) 34 (0.110)
Fukui 210 14 (0.067) 10 (0.048) 31 (0.148)
Hugerth 263 2 (0.008) 0 (0.000) 31 (0.118)
Zhu 143 59 (0.413) 71 (0.497) 41 (0.287)
Zhuang 116 0 (0.000) 0 (0.000) 0 (0.000)
Nagel 163 3 (0.018) 7 (0.043) 1 (0.006)
Zeber-Lubecka 236 4 (0.017) 1 (0.004) 13 (0.055)

Table 2 Total number of genera, as well as number and share of di↵erentially abundant genera, as determined by three
di↵erent DA testing methods on each dataset (only stool samples).

Finally, we compared how the di↵erentially abundant taxa (as determined by scCODA) are related

in terms of taxonomy (Fig. 4D). Notably, most taxa that were di↵erentially abundant in six or more

datasets are genera that are parts of the Firmicutes Clostridia Lachnospirales Lachnospiraceae and

Firmicutes Clostridia Oscillospirales Ruminococcaceae families, or higher order taxonomic groups

that contain these. We noticed the same trend, although less clear due to the number of di↵erentially

abundant taxa being generally lower, also for ANCOM-BC and LinDA (Fig. S9).

In summary, while previous works often reported the microbial signature of IBS to be unclear

and dependent on the cohort [11], our meta-analysis approach with standardized data processing

and di↵erential abundance analysis methods was able to determine 38 genera whose change of

abundance was associated with IBS in multiple datasets with quantifiable degree of consistency.

Analysis of shared ASVs between datasets can potentially reduce study-specific noise

The standardized preprocessing steps of the 16S rRNA sequencing data enabled combining ob-

servations from di↵erent studies. Focusing on the subset of shared ASVs between various studies

could lead to more robust biomarker identification by reducing possible study-specific noise. Eight

ASVs were pinpointed by all methods using classification analysis and di↵erential abundance test-

ing of shared ASVs between the Nagel [15] and Pozuelo [19] datasets. The methods were sparse

log-contrast modeling for classification, LinDA, scCODA, and ANCOM-BC. The taxonomic assign-

ment of the selected ASVs can be found in Figure 5D. Seven of these detected ASVs belong to the

phylum Firmicutes, while one belongs to Bacteroidota. It is also noticeable that six of these ASVs
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belong to the class Clostridia. The taxonomic tree of the shared ASVs shows that Firmicutes and

Clostridia build a large part of the shared ASVs (Fig. 5C). For three ASVs, we have a species-level

annotation, namely eutactus, AC2044, and finegoldii.

Next to the 38 genera identified by di↵erential abundance testing on the genus level, the eight

identified ASVs shared between the Nagel and Pozuelo datasets can serve as a good starting point

for further research.

Figure 5 Analysis of shared ASVs. (A) Bar chart showing how many ASVs are shared by the di↵erent datasets. (B)
Taxonomic tree displaying which genera are shared between the Nagel and Pozuelo datasets. The highlighted branches
are present in the shared ASV subset of Nagel and Pozuelo. (C) Taxonomic tree of ASVs present in the Nagel and
Pozuelo subsets. The outer ring indicates whether the method detects the ASV as di↵erentially abundant or whether
it was selected for classification by the sparse log contrast model. (D) The table reveals the taxonomic assignment for
ASVs with signals detected by all four approaches. The ID is illustrated by the number in the circle next to the ASV
of subplot (C). The three di↵erential abundance and the classification methods share the same e↵ect direction shown
in the column e↵ect. For the di↵erential abundance methods, the plus indicates an increase, and the minus means a
decrease in abundance. The sign suggests a positive or negative coe�cient for the classification method.
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Discussion
Here we developed a framework to combine 16S rRNA sequencing data of IBS and healthy gut

microbiota, with the purpose of standardizing bioinformatic preprocessing and statistical analyses

for more robust and interpretable results on microbial alterations potentially occurring in IBS.

By combining 13 datasets, we found that high-level analyses such as F/B ratio, ↵-diversity, or

dimensionality reduction do not show significant and consistent changes across datasets. However,

more fine-grained analysis looking at di↵erentially abundant taxa at lower taxonomic levels showed

that 38 genera were DA in at least three datasets, most of which belonged to the Firmicutes phylum

and were significantly decreased in IBS patients. This observation was consistent using three well

recognized statistical methods (ANCOM-BC, LinDA and scCODA) that take into account the

compositional nature of microbiome data, which is paramount for correct statistical analysis [52].

Furthermore, our standardized meta-analysis allowed to identify ASVs shared across datasets that

had amplified the same variable region of the 16S rRNA gene. Restricting our DA testing on these

shared ASVs between the Nagel and Pozuelo datasets, we found eight ASVs that were consistently

recognized as DA by the di↵erent statistical methods used, six of which belonged to the Clostridia

class from the Firmicutes phylum, and most of which were significantly decreased in IBS.

Literature reports conflicting results on alterations in microbiome composition in IBS, every or

most studies suggesting to have found a ”microbiome signature” in IBS [11, 12], either through an

alteration of the F/B ratio [13, 53, 2, 15, 19, 42], ↵-diversity [13, 19, 40], and/or a set of specific

microbes [40, 13, 2, 24, 41, 23, 19, 39]. However, more recent studies with bigger cohort sizes seem

to suggest otherwise, with little to no microbiome signature between IBS and healthy controls, due

to the high heterogeneity in microbiome composition in IBS patients [28, 54]. Our results confirm

these findings, as we found no consistent alterations in F/B ratio or in ↵-diversity, despite using the

same bioinformatic pipeline to preprocess the data and the same reference database for taxonomic

alignment. These inconsistencies can be due to a variety of factors, including the small cohort

sizes of most studies; the di↵erences in experimental protocols (sample handling, DNA extraction,

variable region amplified, sequencing technology); study localization and thus dietary habits of the

participants; and last but not least, the inclusion criteria and demographics of the participants

(BMI, age, sex, comorbidities, recent treatments, etc.). To note, the Pozuelo dataset is one of the

biggest cohort sizes (113 IBS patients and 66 healthy controls) in our meta-analysis and in the

literature [19], and we did see a significant reduction in the F/B ratio in that dataset, as was

reported by the authors [19]. This alteration was stable with time, as one month later there was

still a decrease in the F/B ratio in the same participants (Fig.2C), suggesting that this was not

a one-time observation but potentially a long-lasting change in the microbiome of these patients.

However, we did not observe any changes in F/B ratio in the Hugerth or AGP data, two other

datasets with higher cohort sizes [28, 38]. Age and BMI are known to be factors influencing overall

microbiome composition [55, 28], yet participants in the Pozuelo, Hugerth and AGP datasets have

comparable BMI and age distribution (Supplementary Table S1, [19]). This discrepancy in the F/B

ratio is thus probably explained by di↵erences in experimental protocols, study localization, and

other patient characteristics.
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Similarly, we observed no consistent changes in ↵-diversity across datasets. Previous reports sug-

gest that IBS patients have either a decreased or unaltered ↵-diversity compared to healthy controls

[12], which overall aligns with our observations (Supplementary Fig. S4). Only IBS patients from

the Zhu dataset had an increased ↵-diversity compared to their healthy counterparts, as reported

by the authors [40], however in this dataset we observed that ASVs inferred from healthy and IBS

samples were entirely distinct, which probably biased the microbial taxa detected and thus the

↵-diversity measurement. Surprisingly, we found that the Shannon index was decreased in IBS pa-

tients from the Labus dataset compared to healthy controls (Supplementary Fig. S4), whereas the

original study reported the opposite finding [13]. To note, in that paper the authors split IBS sam-

ples into ”IBS” and ”healthy-like IBS” categories based on �-diversity analyses, and they showed

that ”IBS” samples had higher ↵-diversity compared to ”healthy-like IBS” samples or healthy sam-

ples. This di↵ers from our method, where we compared all IBS samples to healthy ones, and we

observed only a small significant decrease in the Shannon index, or no changes in the Simpson index

(Supplementary Fig. S4). We thus think that the contradiction in our observations from the same

data may stem from the di↵erence in the comparison groups, but also probably from the di↵er-

ent preprocessing pipelines used (DADA2 vs QIIME, Silva vs Greengenes). Overall, we found that

changes in ↵-diversity are not a defining feature of IBS, which is consistent with reports from recent

studies with bigger cohort sizes [56, 54, 28], and also with the fact that it is not a reliable indicator

of dysbiosis in other gut-related diseases [57]. This implies that the total number and the evenness

of microbial species remains unchanged in IBS, however it does not provide any information on

potential changes in the actual composition of the microbiome.

To that end, we compared the microbiome composition across samples by looking at the relative

abundances of microbial families, and observed that samples were discriminated more by a study

e↵ect than by disease phenotype (Fig. 3, Supplementary Fig. S6). We expected that by aggregating

data at the genus or family level, we would lose fine-grained analyses on microbial species while

limiting batch e↵ects, as has been done in a previous meta-analysis [57]. However, we still observed

significant study-specific variations, even among microbial families. Despite including 13 datasets in

this meta-analysis, there are still three features of experimental variability distinguishing studies:

the DNA extraction protocol, PCR primers and sequencing technology, all of which have been

shown to influence greatly the microbial taxa detected [55, 58]. Only the Zhu and AGP datasets

have these three characteristics almost identical (Table 1), except that (1) samples were shipped by

participants to the study center in the AGP dataset; and (2) single-end vs paired-end sequencing was

performed in the AGP vs Zhu datasets respectively [38, 40]. Unfortunately, there are currently few

options to correct for such batch e↵ects in 16S rRNA sequencing [59]. In the future, extending this

meta-analysis by adding more datasets, and also having new studies with standardized protocols

and sharing their raw data, will help overcome this limitation. In the meantime, we observed that

the microbial families present in fecal or sigmoid biopsy samples did not allow to discriminate

healthy from IBS individuals, even by IBS subtype (Supplementary Fig. S6), or even by focusing

on single datasets with the biggest cohort sizes (Supplementary Fig. S7). This result is coherent with
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�-diversity analyses in recent studies that have enrolled more subjects than average [28, 56, 54],

where they also reported both in fecal and colonic biopsy samples that IBS patients did not exhibit

a distinctive variation in their microbial communities.

Nevertheless, investigating more finely di↵erential abundant taxa between cases and controls, we

found 38 genera were DA in at least three datasets, including nine that were DA in six datasets or

more (Fig. 4). The vast majority of these genera of interest belonged either to the Ruminococcaceae

or Lachnospiraceae families, both of which are butyrate-producing Clostridia. Butyrate and other

short-chain fatty acids (SCFAs) produced by these microbial families are not only essential nutri-

ents for colonic epithelial cells [60, 61], but they also promote the accumulation and di↵erentiation

of regulatory T cells in the gut epithelium [60, 62], which are important to restrain inflammatory

responses. The loss of such beneficial microbes may thus prevent proper function of the gut ep-

ithelial barrier. The Pozuelo study did report a decrease in Ruminococcaceae particularly in IBS-D

patients, and hypothesized that this reduction could alter the gut epithelium permeability and

contribute to the diarrhea [19]. This hypothesis goes along with the observation that higher rel-

ative abundance of Ruminococcaceae in fecal samples correlates with harder stools on the Bristol

Stool Scale [63]. Considering that there is controversy on whether Ruminococcaceae is increased,

decreased, or unaltered in IBS [11, 12], it is thus new that we find here multiple genera that are

consistently less abundant in IBS samples compared to healthy controls in several datasets. To note,

in our meta-analysis we may have an over-representation of IBS-D samples (n=277) compared to

other subtypes (n=195), although there is a substantial number of samples of unknown IBS subtype

(n=811), so the significant decrease in Ruminococcaceae that we observed may be biased towards

IBS-D samples. Extending this meta-analysis with more datasets, especially with covariates on stool

consistency and IBS subtype, will be paramount to confirm the association of Ruminococcaceae and

Lachnospiraceae with IBS or with more specific IBS subtype(s).

In this meta-analysis, we were unfortunately unable to include many datasets derived from gut

mucosal biopsy samples and thus conduct detailed statistical analyses on these samples despite

their relevance. The microbial composition in fecal and sigmoid biopsy samples was drastically

di↵erent, as expected [28, 24, 39], hence samples from the gut mucosa will better reflect the microbial

ecosystem interacting with the gut epithelium. To overcome this limitation, we are making this meta-

analysis publicly available to the scientific community, so that anyone can add their own dataset(s)

and further investigate microbial alterations occurring in IBS. We also acknowledge that we report

here only associations between IBS and microbiome composition, which is not proof of causation

and needs to be confirmed experimentally.

In summary, our meta-analysis confirms that Firmicutes to Bacteroidota ratio and ↵-diversity

changes are not defining features of IBS. Furthermore, strong study-specific e↵ects urges the need

to have established standardized protocols in 16S rRNA sequencing for comparable and repro-

ducible research in the future. Finally, we identified multiple genera from the Ruminococcaceae and

Lachnospiraceae bacterial families as being downregulated in fecal samples from IBS patients across

several studies, which is the first time that such an alteration associated with IBS is consistently

observed in multiple studies.
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Materials and methods
Search strategy and data collection

Case-control studies comparing gut microbiome composition between IBS patients and healthy con-

trols using 16S rRNA sequencing were first identified from references listed in systematic reviews

[12, 11]. We extended our search further to PubMed using keywords such as ”irritable bowel syn-

drome” and ”gut microbiota”. We included in our meta-analysis any study published until April

2021 that had (1) enrolled adult IBS patients and healthy controls; (2) performed no surgical or

drug intervention on patients in an e↵ort to treat IBS; (3) measured gut microbiome composition

with 16S rRNA sequencing. We obtained raw fastq files and sample covariates of the included stud-

ies either from online repositories (Sequence Read Archive, European Nucleotide Archive), or from

personal communication with the authors [15]. Data from the American Gut Project (AGP) was

also included in our meta-analysis [38]. As the AGP is an open platform with thousands of micro-

biome samples, we first downloaded the covariates table from the sequence read archive (SRA) on

June 6th 2021, in order to identify samples of interest. The questionnaire filled in by the participants

allowed us to discard any sample with (1) a reported age outside 18 - 70 years old; (2) a BMI outside

16 - 35; (3) any antibiotics taken in the past 6 months; (4) other reported comorbidities such as

inflammatory bowel disease, C.di�cile infection, fungal overgrowth in their gut, gluten intolerance

or diabetes. This population consisted of 4,722 healthy samples and 645 samples diagnosed with

IBS by a medical professional. We randomly chose 645 healthy samples to have an even number of

cases and controls, verifying by a Student’s t-test that healthy and IBS samples had comparable age

and BMI distribution (Supplementary Table S1). We thus downloaded a total of 1,290 fastq files

from the AGP (Supplementary Table S4). The code for this sample selection strategy is available

on our github repository (https://github.com/bio-datascience/MetaIBS).

Processing of 16S rRNA sequencing data

For datasets that required demultiplexing (Supplementary Table S2), reads were assigned to each

sample based on their barcode, and individual fastq files for each sample were generated using sabre

(https://github.com/najoshi/sabre). We re-processed raw fastq files of 16S rRNA sequence data in

R (v. 4.0.4) [64] using the DADA2 package version 1.21.0 [65], in order to perform quality filtering

and obtain the count and taxonomic dataframes. These steps are further described hereafter. First,

we discarded reads not containing primers, and trimmed o↵ the primers and any preceding sequence.

To note, no primers were found in the AGP dataset, and in the Zeber-Lubecka dataset an unknown

mix of primers was used, so this step was skipped (Supplementary Table S2). Then, we filtered

reads based on their quality scores with the filterAndTrim function from DADA2 [65], using default

parameters except that reads were (1) truncated at the first base where a quality score of 10 or

below was observed; (2) discarded if shorter than 150bp; (3) discarded if they contained more than 3

expected errors. Next, error rates were estimated from randomly chosen samples with the learnError

function [65]. We checked that the estimation from the parametric error model matched the observed

error rates. For samples obtained from Ion Torrent sequencing technology, manual model adjustment
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was necessary at high quality scores to match the observed error rates (Supplementary Table S2).

Subsequently, we identified de novo amplicon sequence variants (ASVs) with the dada function,

which leverages the error model to assess whether sequence variants are more likely to be ASVs or

amplicon errors [65]. For paired-end sequencing data, we merged paired reads after this step. After

inferring ASVs, we looked at their length distribution and compared it to the supposed length

of the amplified 16S variable region. This allowed us to discard abnormally short or long ASVs

(50bp above or below the expected length), which are likely from non-specific priming. Chimeric

sequences were also identified and discarded. Finally, ASVs were aligned to the Silva reference

database (release 138) from the Kingdom to the Species level [33, 34]. After taxonomic alignment,

we removed ASVs belonging to Eukaryota or to an unknown phylum. In addition, we discarded

samples with a total count lower than 500. In the AGP dataset, as study participants ship their fecal

samples to the nearest study center, certain bacterial taxa grow at room temperature and bias the

observed microbiome composition [66]. Amir et al. [66] shared a list of operational taxonomic units

known to bloom at room temperature (https://github.com/knightlab-analyses/bloom-analyses),

which are advised to be removed when analyzing the AGP data. We thus discarded any ASVs

identified as bloom sequences in the AGP dataset. Finally, we combined the ASV, taxonomic, and

metadata tables into a phyloseq object using the Phyloseq package (v.1.34.0) for further analysis

[67].

Taxonomic tree

We combined phyloseq objects from all datasets with the merge phyloseq function from the Phy-

loseq package. To plot a taxonomic tree representing all detected genera across datasets, we first

aggregated taxa to the genus level, before transforming the taxonomic table into a treedata object

with the treeio pacakge (v.1.18.1) [68]. We then plotted the taxonomic tree with the ggtree package

(v.3.2.1) [69].

Heatmap

To plot a heatmap of the main microbial families represented among fecal samples, we aggregated

taxa to the family level and divided counts by the total count per sample in order to obtain relative

abundances. We then kept only families present in at least three datasets (p=116 families). We

used the pheatmap package (v.1.0.12.; https://CRAN.R-project.org/package=pheatmap) to plot

microbial families as rows, clustered using the Ward error sum of squares hierarchical clustering

method with the method = ”ward.D2” option [70, 71]; and samples as columns, ordered by disease

phenotype and dataset. For visualization purposes, we plotted the relative abundances on the

heatmap on a log10 color scale.

Uniform Manifold Approximation and Projection

To perform a Uniform Manifold Approximation and Projection (UMAP) [43], we used pairwise log-

ratios between microbial families as input data. To obtain these, we aggregated taxa to the family
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level, then added pseudocounts of 0.5 before computing pairwise log-ratios between all microbial

families across datasets. We computed the UMAP on all fecal samples (n=2,220) with the umap

function from the uwot package (v.0.1.11.; https://github.com/jlmelville/uwot), using 20 neighbors

and 3 components.

Firmicutes to Bacteroidota ratio

In order to compute the Firmicutes to Bacteroidota (F/B) ratio, we first aggregated taxa to the

phylum level in order to obtain the total count of each phylum per sample. We imputed a 0.5

pseudocount in samples containing no Firmicutes and/or Bacteroidota. Then, we calculated the

log2 ratio of absolute Firmicutes over Bacteroidota counts in each sample. For datasets with two

time points we only included samples from the first time point, while for datasets with both fecal

and sigmoid biopsy samples we plotted the F/B ratio separately for each sample type.

Sequencing depth

To visualize sequencing depth di↵erences between datasets and the number of reads discarded

through our standardized preprocessing pipeline, we plotted the number of reads before and after

quality control of the data (Supplementary Fig. S1). We called the number of reads in the raw fastq

files ”before” quality control, and the number of counts per sample in the ASV table right after

removing chimeric sequences (see Processing of 16S rRNA sequencing data) ”after” quality control.

Thus, this doesn’t take into account that we removed samples with less than 500 total count or

that we removed ASVs identified as Eukaryota.

Relative abundance of main phyla

We aggregated microbial taxa to the phylum level and divided counts by the total count per sample

in order to obtain relative abundances. We then plotted the relative abundance of the main five

phyla (classifying the remaining phyla as ”other”) in all fecal samples or sigmoid biopsy samples.

Alpha-diversity

We computed the Shannon and Simpson indices with the plot richness function from the Phyloseq

package. For datasets with two time points [24, 19], only the samples from the first time point were

used. The alpha diversity was computed separately for each sample type in datasets with both fecal

and biopsy samples [28, 39].

Di↵erential abundance analysis

We applied three recently published methods for di↵erential abundance (DA) testing to the mi-

crobial count table of each dataset. To uncover trends at di↵erent levels of taxonomic granularity,

each method was used on each dataset five times, aggregated at the phylum, class, order, family,

and genus level, respectively. We used ANCOM-BC [47] and LinDA [48] for di↵erential abundance

testing of microbial composition data, as well as the scCODA model [49], a general Bayesian mod-

eling framework for high-throughput sequencing data. All three methods take into account that
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the data is inherently compositional, i.e. only proportional analyses are valid [52]. To avoid biases

caused by the type of sampled microbial community, we only used stool samples for this analysis,

leaving out the data from [24], as well as the microbial data from the sigmoid colon in the works of

[28, 39]. Furthermore, we only analyzed the samples from the initial collection in the data of [19].

For all methods and taxonomic ranks, the nominal false discovery rate was set to p < 0.2, a value

commonly used in DA testing of microbial populations.

While ANCOM-BC and LinDA detect compositional changes of a feature with respect to all

other features, the scCODA model requires a reference feature that is present in most samples

and has low dispersion over all samples [49]. To ensure comparability, we chose the same reference

on the Genus level for all datasets, and further enabled comparability across taxonomic ranks by

using the reference’s ancestor at a every taxonomic rank as the reference feature for the respective

aggregation level. We further did not consider genera from the Bacteroidota or Firmicutes phyla as

references, as these are likely to contain many di↵erentially abundant genera, leaving us with three

candidate genera that are present in every dataset, which we selected for further inspection (Table

S5). For Escherichia/Shigella, the dispersion was very high (> 0.3) in three datasets ([39, 28, 38]),

while Slackia was never found in more than 20% of samples in any dataset. The remaining genus

Parasutterella is rare in only two datasets ([13, 39]), and has rather low dispersion (< 0.055) in

all datasets. Furthermore, the abundance of species from this genus was only associated with IBS

in one previous analysis [72]. However, the LEfSe method [73] used in [72] was recently shown to

produce false-positive results on amplicon sequencing data [74], leading us to the conclusion that

Parasutterella is likely not a↵ected by IBS and therefore suited as a reference for our purposes.

In the shared ASV analysis, we applied the three models ANCOM-BC, LinDA, and scCODA

with the same method specifications as before, taking the ASV corresponding to Parasutterella

excrementihominis as the reference for scCODA to provide comparability to the previous analyses.

Each method was used to determine di↵erentially abundant ASVs in the two data subsets consisting

of only samples from either the Nagel [15] or Pozuelo [19] datasets, and the combined data with

samples from both sources. For LinDA, we additionally ran a fourth model, in which we also adjusted

for the data source in the combined data by adding random e↵ects for the source datasets.

Classification analysis on shared ASVs

Besides applying DA testing, we used a classification approach to determine the relationship between

IBS and ASVs. For this part of the analysis, we looked at the ASVs shared between the Nagel

and Pozuelo datasets. We used only the observations from the first time point in the longitudinal

analysis, similar to the DA testing approach. We also excluded ASVs that occurred in less than

10% of the observations to avoid association with spurious taxa. In addition, we removed all ASVs

not belonging to the Kingdom of bacteria. These preprocessing steps reduced the number of shared

ASVs from 806 (see Fig. 5A) to 373 (see Fig. 5B). Of 209 observations, 30 observations were from

the Nagel [15] and 179 from the Pozuelo [19] dataset. 81 subjects were diagnosed with IBS, and 128

healthy controls. To determine the relationship between the dependent variable health status and
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ASVs as independent variables, we used a sparse log-contrast model for classification with the tuning

parameter � from the trac package [75]. This modeling approach accounts for the compositional

structure of the covariates. A log transformation is required for the model, and a pseudo-count of

1 was added to avoid log(0). The explicit model formulation is

yi ⇠ |�0 +
pX

j=1

log(ASVij) · �j | s.t.
pX

j=1

�j = 0

where yi 2 {Healthy (�1), IBS (1)}, i = 1, ..., n indicate the subject, and ASVj denotes the count

of the j-th ASV. We used 5-fold cross-validation to determine the optimal tuning parameter of the

model, applying the heuristic of setting the tuning parameter ”1 standard error” away from the

minimum misclassification error.

High-dimensional compositional mean test

We employed the high-dimensional compositional mean test [45] to test for a shift in the compo-

sitional mean. The test builds upon the centered log-ratio transformation (CLR) [44] to overcome

the constraints imposed by compositional data and tests whether the mean of the CLR transforma-

tioed data di↵er across two groups. Since the CLR transformation cannot handle zeros, we replaced

them with a pseudo-count of 1. The test was applied to the compositions on the Family level to

examine two aspects: (1) Pairwise similarity of the mean compositions across di↵erent datasets and

(2) compositional mean shift between IBS and healthy within the di↵erent datasets. For the second

part, we focused on taxa that appeared in at least three datasets.
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