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Advances in single-cell technology have enabled the measurement of
cell-resolved molecular states across a variety of cell lines and tissues under a
plethora of genetic, chemical, environmental, or disease perturbations. Current
methods focus on differential comparison or are specific to a particular task in a
multi-condition setting with purely statistical perspectives. The quickly growing
number, size, and complexity of such studies requires a scalable analysis
framework that takes existing biological context into account. Here, we present
pertpy, a Python-based modular framework for the analysis of large-scale
perturbation single-cell experiments. Pertpy provides access to harmonized
perturbation datasets and metadata databases along with numerous fast and
user-friendly implementations of both established and novel methods such as
automatic metadata annotation or perturbation distances to efficiently analyze
perturbation data. As part of the scverse ecosystem, pertpy interoperates with
existing libraries for the analysis of single-cell data and is designed to be easily
extended.
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Introduction
Understanding cellular response to stimuli is crucial for identifying biological phenomena and
mechanisms. Single-cell data has increasingly shifted from observational experiments to
perturbation experiments, encompassing genetic modifications, chemical treatments, physical
interventions, environmental changes, diseases, and combinations thereof. Technologies such
as Perturb-seq1, CROP-seq2, and Sci-plex3 leverage single-cell readouts to capture
perturbations at scale. By monitoring resulting shifts in intrinsic cell states, single-cell
perturbation analyses offer insights into changes in gene programs, shared and divergent
responses across tissues, drug targets and interactions, changes in cell type frequency, and in
cell-cell interactions after perturbation.

Statistical and machine-learning based analysis methods have been developed for such
complex data4–7 resulting in the discovery of, for example, cell states associated with autism risk
genes8 or stimulation responses in primary human T cells9. However, the size and complexity of
larger perturbation screens can pose significant challenges for interpretation without meaningful
lower-dimensional representations and additional context regarding cell lines or perturbations.
No current analysis framework exists which scales to genome-scale datasets10, contextualizes
data with public annotations, and uses common data structures across tools. Furthermore,
many highly single-task tools suffer from maintenance issues, or are confined to the R
ecosystem, complicating the analysis. We have seen from other, widely used frameworks within
the single-cell realm, such as scirpy11 for adaptive immune receptor data or scvi-tools12 for
probabilistic modeling, to enable the efficient analysis of multimodal data while providing
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building blocks for developers to build upon. Inspired by their impact and the lack of efficient
frameworks for perturbation data, we develop a new framework focused on perturbation data
within scverse13.

Pertpy, a framework for perturbation analysis in Python, is purpose-built to organize, analyze,
and visualize complex perturbation datasets. Pertpy is flexible, and can be applied to datasets
of different assays, data types, sizes, and perturbations, thereby unifying previous data-type or
assay-specific single-problem approaches. Designed to integrate external metadata with
measured data, it enables unprecedented contextualization of results through swiftly built,
experiment-specific pipelines, leading to more robust outcomes. To evaluate methods and
obtained representations for perturbations, we implemented a series of shared metrics. The
wide array of use-cases and different types of growing datasets are addressed by pertpy
through its sparse and memory-efficient implementations, which leverage the parallelization and
GPU acceleration library Jax14, thereby making them up to eight times faster than original
implementations (Supplementary Figure 1). We demonstrate this versatility by applying pertpy
to three different, popular scRNA-seq perturbation use-cases. To show how pertpy can discover
new gene programs, we remove confounding factors in a CRISPR screen (Perturb-seq)15 study
to project it into a meaningful perturbation space, where we transfer labels of known to unknown
gene programs. Moreover, we demonstrate how pertpy can be used to deconvolve perturbation
responses into viability-dependent and -independent components in a large-scale gene
expression and drug response screen16 by integrating metadata from existing databases.
Finally, we decipher compositional changes, rank perturbation effects, and find treatment
response-specific multicellular programs in a triple negative breast cancer study17. Whereas
previously a user would separately download cell line or perturbation information from scattered
databases while piecing together analysis tools from different, incompatible ecosystems, it is
now possible to efficiently analyze complex perturbation datasets end-to-end with integrated
biological context.

We provide online links to tutorials with more than 15 additional use-cases that demonstrate
pertpy’s usage with datasets spanning a variety of cell lines and perturbation conditions, ranging
from CRISPR screens18 and exposure to pathogens19 to inflammation20 and COVID-19 severity
states21. Pertpy is accessible as an extendable, user-friendly open-source software package
hosted at https://github.com/scverse/pertpy and installable from PyPI and Conda. It comes with
comprehensive documentation, tutorials and use-cases available at
https://pertpy.readthedocs.io.

Results
Pertpy enables fast and scalable perturbation analysis
Pertpy includes methods for single and combinatorial perturbations to cover diverse types of
perturbation data including genetic knockouts, drug screens, and disease analyses. The
framework is designed for flexibility, offering more than 100 composable and interoperable
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analysis functions organized in modules which further eases downstream interpretation and
visualization. These modules host fundamental building blocks for the implementation and
methods that share functionality that can then be chained into custom pipelines. To facilitate
setting up these pipelines, pertpy guides analysts through a general analysis pipeline (Figure 1)
with the goal of elucidating underlying biological mechanisms by examining how specific
interventions alter cellular states and interactions. In a data transformation step, any
confounding factors and artifacts are first removed during quality control. To identify and
visualize groups of similarly behaving perturbations, a perturbation space, which quantifies data
similarities grouped by phenotype, can be calculated that can more easily be interpreted by
enriching the cell lines or perturbations with metadata. In a second knowledge inference step,
the obtained representations are used as input for statistical and machine learning models.

The input to a typical analysis with pertpy are unimodal scRNA-seq or multimodal perturbation
readouts stored in AnnData22 or MuData23 objects. While pertpy is primarily designed to explore
perturbations such as genetic modifications, drug treatments, exposure to pathogens, and other
environmental conditions, its utility extends to various other perturbation settings, including
diverse disease states where experimental perturbations have not been applied. A typical
analysis with pertpy starts by curating the perturbation metadata against ontologies such as the
Cell Line ontology24 or the Drug ontology25 and annotating the perturbations with additional
metadata obtained from Depmap and Genomics of Drug Sensitivity in Cancer (GDSC)26 for cell
lines, the Connectivity Map (CMap)27 for mechanisms of action, and the pubchem28 and
CHEMbl29 databases for drugs (Methods). Next, if the data originates from a CRISPR screen,
pertpy assigns guide RNAs to cells. The application of CRISPR can exhibit variable efficacy in
affecting gene expression. Pertpy’s fast mixscape18 implementation accounts for this by
classifying targeted cells based on their response to a perturbation, analyzing each cell’s
perturbation signature to determine if they were successfully perturbed (Methods,
Supplementary Figure 1). As the number of applied perturbations increases, it becomes
increasingly challenging to compare and interpret them further. Pertpy provides several distinct
ways to learn biologically interpretable perturbation spaces that depart from the individualistic
perspective of cells and instead generate a single embedding per perturbation to summarize the
cellular responses (Methods). This specialized space enables representing the collective
impact of perturbations on cells and serves as potential input for downstream analysis
methods15,30,31. Generally, pertpy’s analysis pipeline can be adapted depending on whether the
experiment involved multiple cell types or a number of experimental perturbations.

To robustly identify biological variation across conditions, pertpy fills a gap within the single cell
analysis ecosystem by providing an intuitive interface for differential gene expression that
supports complex designs and contrasts which is needed for multi-condition data and natively
supported in scanpy (Methods). Currently, pertpy supports PyDESeq232, edgeR33, Wilcoxon,
and T-tests. Going beyond differential gene expression at scale, both annotated metadata and
differentially expressed genes can then be used as input for further pertpy modules such as
gene set enrichment tests to uncover the biological effects induced by the perturbations
(Methods).
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Tracking cell type compositional shifts is crucial for understanding the underlying mechanisms of
disease progression, tissue regeneration, and developmental biology, offering insights into
cellular responses and adaptations. Pertpy offers two distinct approaches for detecting
compositional shifts, both utilizing a common MuData-based data structure. If labeled groups
are available, pertpy provides substantially accelerated and more scalable implementations of
scCODA34 2.0 and its cell type hierarchy-aware extension tascCODA35 2.0 (Supplementary
Figure 1, Methods). Both methods employ Bayesian methods to elucidate cell type
compositional changes. If no labeled groups are available or continuous proportions are
expected, such as during developmental processes, pertpy implements a scalable version of
Milo, originally unique to the R ecosystem36, to conduct differential abundance tests by
assigning cells to overlapping neighborhoods within a k-nearest neighbor graph (Methods).

Understanding how cells function together within tissues is a significant challenge. Multicellular
programs (MCPs) refer to the orchestrated activities of various cell types that collaborate to
create complex functional structures at the tissue scale. Pertpy's fast and scalable
implementation of DIALOGUE37 uncovers MCPs through a combination of factor analysis and
hierarchical modeling, thanks to a novel fast input-order invariant linear programming solver and
a new, fast test to determine significantly associated MCP genes (Methods).

Not all cell types are equally affected by perturbations. Pertpy’s fast implementation of Augur
(Supplementary Figure 1) ranks cell types based on their response to perturbations by training
machine learning models to predict experimental labels within each cell type, and then ranking
these cell types by the models' accuracy metrics across multiple cross-validation runs
(Methods). Further, understanding the dynamics of cellular responses to various stimuli is
crucial in particular when the experimental exploration of all possible conditions is unfeasible.
CINEMA-OT38, as implemented in a scalable manner in pertpy, extends this concept by
distinguishing between confounding variations and the effect of perturbations, achieving an
optimal transport match that mirrors counterfactual cell pairings (Methods). These pairings
enable analysis of potentially causal perturbation responses, allowing for individual
treatment-effect analysis, clustering of responses, attribution analysis, and the examination of
synergistic effects.

For accurate statistical comparison and measurement of perturbation effects, it is essential to
employ distance metrics between cell groups. A suitable metric quantifies divergence or
similarity in expression patterns of cells under different perturbations, allowing to infer unique or
common mechanisms. Different types of distance metrics make varying assumptions on the
shape of the data and emphasize specific aspects of it. For instance, optimal transport based
distances such as the Wasserstein distance assume correspondence between cell populations,
while Mahalanobis distance focuses on covariance structures and scale differences within the
data. In order to capture a wide range of distance metric types, more than 18 different metrics
including, but not limited to, the euclidean distance, E-distance39, and the Wasserstein
distance40 are implemented in pertpy (Methods). All included metrics can also be used for
perturbation testing through Monte-Carlo permutation testing, allowing for the statistical
evaluation of perturbation distinguishability and efficacy (Methods).
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Building upon the scverse13 ecosystem, pertpy ensures interoperability with existing workflows
for single-cell omics analyses and can be purposefully extended to solve new challenges. Base
classes for additional perturbation spaces, distances, differential gene expression tests, and
other components are provided to facilitate swift development. We additionally provide a dataset
module with more than 30 public loadable perturbational single-cell datasets in MuData and
AnnData format building upon and extending scperturb39 to kickstart analysis, development and
benchmarking with pertpy. The metadata of the datasets were curated against public ontologies
to enable swift dataset integration and large-scale machine learning including foundational
models.

Figure 1. Modules of the pertpy framework. (A) Unimodal or multimodal single-cell perturbation data
originating from genetic modifications, chemical treatments, physical interventions, environmental
changes, or diseases is enriched with metadata from several databases. During preprocessing,
confounding factors such as cell cycle and batch effects may be removed. Targeted cells are labeled as
successfully or not successfully perturbed. Altogether this enables the calculation of a meaningful
perturbation space. (B) Pertpy enables downstream analyses, dependent on the question of interest.
These include differential analysis, response prediction, the determination of multicellular programs, the
calculation of distance between perturbations, and mechanism of action enrichment.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606516doi: bioRxiv preprint 

https://paperpile.com/c/0B1Agy/GV6E
https://paperpile.com/c/0B1Agy/ykxv
https://doi.org/10.1101/2024.08.04.606516
http://creativecommons.org/licenses/by/4.0/


Pertpy facilitates the exploration of genetic interaction manifolds
To demonstrate pertpy’s ability to create meaningful perturbation spaces, we examined a
publicly available CRISPR screen dataset initially presented by Norman et al.15, consisting of
111,255 single-cell transcriptomes of K562 cells subjected to 287 single gene and gene pair
perturbations. This dataset allows us to investigate how genetic interactions through
combinatorial expression of genes lead to cellular and organismal gene programs and
phenotypes.

After preprocessing (Methods), we applied pertpy’s mixscape18 implementation to remove
confounding effects such as the cell-cycle by calculating cell-specific perturbation signatures
(Figure 2A, Methods). To identify targeted cells that escaped gene knockout despite the
presence of a guide RNA and should thus not be considered perturbed, we applied mixscape’s
mixed effect model, which improved the Silhouette Coefficient for the perturbation label by
0.097. Specifically, we identified 25,183 such cells (Figure 2B), characterized by a low
perturbation score that we removed in contrast to the original authors, compared to 74,237 cells
with sufficient signal (Figure 2C) which we kept for further analysis.

We then projected the perturbation signature into a perturbation space using the penultimate
layer of our multi-layer perceptron based discriminator classifier (Figure 2D, Methods).
Importantly, we observe that explicitly training the classifier to distinguish between individual
perturbations results in the clustering of perturbations with similar effects on the cell, as
indicated by the affected gene programme as originally labeled by Norman et al.15. In addition to
validating known annotations, pertpy also enables extending these to clusters with unknown
gene programmes using k-nearest neighbor based label transfer (Methods). Evaluating data in
perturbation space also allows for a refinement of previous annotations. For instance, the
perturbation TP73, characterized as a pioneer factor gene programme in the original
publication15, clusters with the G1 cell cycle perturbations when embedded using the
discriminator classifier. This can be explained by TP73's profound influence on the cell cycle41.
Moreover, what the original authors identified and labeled as a single pro-growth gene
programme cluster can now be differentiated into two distinct clusters. Indeed, we found that
although both clusters comprise perturbations targeting genes important for cell growth, one
cluster mainly targets Krüppel-like factors (KLFs), while the other cluster comprises cells with
perturbed mitogen-activated protein kinases (MAPK). In summary, the projection of data into the
perturbation space also allows for an in-depth exploration of clusters without gene programme
annotation, enabling the identification of a novel, previously unannotated cluster, which
comprises perturbations with a profound downregulating effect on the neutrophil degranulation
pathway (Figure 2D). This use-case demonstrates the simplicity and effectiveness of combining
several of pertpy’s modules into a new analysis pipeline from quality control over perturbation
space to the annotation of previously unlabeled gene programs.
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Figure 2. Learning a unified perturbation space in combinatorial CRISPR perturbation scRNAseq
data15 via pertpy’s perturbation space pipeline. Before preprocessing, the dataset featured control,
targeted but not successfully perturbed (NP), and successfully perturbed (KO) cells. (A) Pertpy’s
mixscape implementation removes confounding factors such as cell cycle effect. (B) Pertpy’s application
of mixscape determined 25,183 cells to be targeted but labeled as not successfully perturbed. (C)
Example density plot of a combination gene knockout. (D) Perturbation space highlighting gene
programmes that were originally labeled by Norman et al.15 (solid colors, circles) and determined via label
transfer (opaque colors, triangles).
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Pertpy streamlines discovery for complex perturbation
experiments
Advancements in multiplexing technologies have significantly increased the number of cell
states which can be profiled in one experiment, resulting in large perturbation screens.
McFarland et al.16 introduced MIX-Seq, an experimental assay which enables the multiplexing of
different cell lines within a single sequencing run16. We use pertpy to efficiently analyze a
dataset comprising 172 cell lines and 13 drug treatments16.

Pertpy reduces annotation and quality control to just a few steps. Its metadata module
annotates the cell lines with tissue-of-origin, cancer type, and bulk expression profiles from the
disease ontology Oncotree42 and the Cancer Cell Line Encyclopedia43 (CCLE). Compounds are
annotated with compound targets and mechanism of action from the Cancer Dependency Map
(DepMap)44, Genomics of Drug Sensitivity in Cancer26 (GDSC), and Connectivity Map (CMap)27

(Methods). Following annotation, pertpy enables immediate visualization for exploratory
analysis (Figure 3A). Additionally, annotated bulk expression allows users to compare RNA
profiles of their cell lines with established public datasets, providing rapid quality control
functionality. Comparative analysis revealed an average Pearson correlation coefficient of 0.88
across all cell lines (Figure 3B), demonstrating substantial consistency with the cell line
passages cataloged in the DepMap CCLE database, and enabling the integration of additional
screening data from the DepMap PRISM project31.

Pertpy significantly streamlines the replication and extension of the original analyses by
McFarland et al.16. We use pertpy to fetch and annotate IC50 values for each cell line and
perturbation pair from GDSC (Methods). This allows us to easily replicate the original statistical
method to uncover viability-dependent and -independent gene expression associations. We
selected a different drug from the original analysis16, the BRAF inhibitor dabrafenib45, and used
pertpy to compute post-treatment log-fold changes across 81 cell lines (Methods). We interpret
the intercept and slope of the linear regression on IC50 to be the viability-independent and
-dependent responses of the respective gene to dabrafenib (Methods, Figure 3 C-D). Notably,
we find that genes like UBE2V2, RP11-386G11.10, and ETV4, which are linked to cancer
progression46–48, displayed significant variations in their fitted response parameters (Figure
3C-D). Additionally, our analysis identified an enrichment of genes involved in interferon
signaling and MHC class II antigen presentation in the viability-dependent genes, consistent
with the initiation of an immune-mediated cell death response to dabrafenib (Figure 3D).
Interestingly, protein translation pathway genes were upregulated in the viability-independent
effects of dabrafenib, a response previously noted with dabrafenib49 but with no mechanistic
information until now. This mechanism is distinctly different from dabrafenib’s putative
mechanism of action, BRAF inhibition, which targets an orthogonal cell survival pathway.
Pertpy's ability to efficiently manage, analyze, and supplement complex experimental design
with additional datasets underscores its utility in conducting sophisticated biology-informed
analyses. This streamlined approach greatly enhances the depth of biological insights.
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Figure 3. Deconvolution of viability-related response signatures in scRNA-seq drug screen data16.
(A) Overview of the chemical perturbation dataset. Cell lines and perturbations were annotated with
pertpy with additional metadata facilitating detailed analysis. (B) Linear regression model between
single-cell expression data and GDSC profiles show high correlation reinforcing the quality of the dataset.
(C) Volcano plot showing the value and significance (Benjamini-Hochberg corrected) of the intercept of
the fit linear regression models for each gene (top), indicating the viability-independent response. An
example linear regression for the gene UBE2V2 (bottom left) shows that a change in UBE2V2 expression
in a cell line is observable, irrespective of the respective cell line's sensitivity to dabrafenib treatment. The
top genes were used to perform gene set enrichment analysis (bottom right). The figure design is inspired
by Figure 2C in the original paper16. (D) Same as (C), but for the slope of the linear regression models,
indicating the viability-dependent response.
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Pertpy enables deciphering effects of perturbations on cellular
systems
Understanding the complex interplay between the immune system and the tumor
microenvironment (TME) is crucial for unraveling cancer progression. This is particularly
important in solid tumor entities, such as triple-negative breast cancer (TNBC), a rare,
aggressive breast cancer subtype that lacks estrogen, progesterone, and human epidermal
receptors, rendering it unresponsive to standard receptor-targeted therapies50. Single-cell
transcriptomics of breast cancer tumors has uncovered distinct T-cell subtypes and the
involvement of plasmacytoid dendritic cells (pDCs) in promoting immunosuppression within the
TME in TNBC through tumor-immune crosstalk51 which is a significant driver of treatment
resistance52. Studies have further elucidated TNBC-specific features and differential responses
to neo-adjuvant chemotherapy (NACT) and immunotherapy, highlighting the role of PD-1 and
PD-L1 pathways in modulating treatment outcomes53. Therefore, we set out to demonstrate how
pertpy can be used to investigate treatment responses using a publicly available dataset of 22
TNBC patients treated with NACT with and without additional PD-L1 inhibitor paclitaxel17

administration, initially presented by Zhang et al.17 (Methods, Figure 4A-B).

To rank perturbation effects, we used pertpy to calculate the Euclidean distance between the
pre- and post-treatment patients of the four groups due to its superior performance in
independent benchmarks54. We found that patients responding to NACT alone had a greater
distance between pre- and post-treatment expression profiles compared to responders to
anti-PDL-1 and NACT combination therapy, implying that the latter led to potentially a less
intense response or was used in cases with a worse prognosis. To identify cell types involved in
treatment response, we investigated shifts in cell type composition induced by the treatment.

Tracking cell type shifts is essential for understanding disease progression, tissue regeneration,
and treatment responses, revealing key insights into cellular adaptations. We applied pertpy’s
fast implementation of the Bayesian model scCODA34 2.0 to the dataset per treatment
(Methods). We found compositional shifts for NACT treatment in CD4 central memory, CD8
effector memory, CD8 tissue-resident memory, and naive T cells between disease stages but
not for combination therapy (Figure 4D). To better understand whether the cell types that are
subject to compositional shifts are a part of a common cell circuit, we set out to find shared gene
expression signatures in several cell types which jointly act as tissue level units, so-called
multicellular programs (MCPs)37.

We applied pertpy’s implementation of DIALOGUE37, which finds MCPs using matrix
decomposition in conjunction with a novel, fast input-order invariant linear programming solver,
to the TNBC treatment dataset to uncover 10 multicell type signatures predictive of treatment
response (Methods). We find that a patient’s average MCP2 score in seven different cell types
(Supplementary Table 1) is predictive of treatment response for both treatments (adj. P≤
1.1e-01) (Figure 4D, Supplementary Figure 2A,B). We pooled patients receiving both
treatments for this analysis due to scalability limitations of the DIALOGUE method, which
requires all cell types analyzed be present in all patients. Several of the MCP2-associated
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genes (Methods, Supplementary Figure 2) are associated with heat shock proteins (HSPs),
implying a role for these proteins in immune cells in treatment response. For instance, HSPA1B,
which is significantly increased in MCP2 for all tested cell types (Methods), has been previously
identified as a prognostic biomarker in breast cancer55,56. Variations in HSPs within the cellular
tumor microenvironment and cancer cells, potentially influenced by external factors or
communication among cell types, may impact tumor progression. Therefore, we directly
investigated cell-cell communication using a public ligand-receptor gene database (Methods).
We found several interactions, such as the experimentally validated interaction between the
cytokine ligand IL-7, which has a known antitumor role across diverse cancers57, and its
receptor IL7R. The gene encoding IL-7 is a MCP 2 associated gene (Methods) in memory B
cells and its receptor is expressed by central memory T cells and naive T cells. Increased IL-7
activity may contribute to suboptimal treatment outcomes by affecting T cell behavior and
elevating levels of JUN, FOS, and FOSB, which are key components of the AP-1 complex that
can either inhibit or promote tumor growth, depending on the context58,59. Surprisingly, lower
AP-1 activity is linked to T cell exhaustion60, which is counterintuitive since treatment responders
often exhibit greater T cell exhaustion. Whether IL-7 signaling directly causes these
observations, or if a common underlying signal is influencing adaptive immune responses and
IL-7 signaling requires further experimental validation.
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Figure 4. Pertpy identifies complex perturbation effects in multicellular tissue as demonstrated on
a TNBC treatment dataset17. (A) Schematic overview of the experimental design. (B) Single-cell
RNA-seq of tissue from 22 patients with triple-negative breast cancer, comparing pre- and post-treatment
responses to anti-PD-L1 therapy and neoadjuvant chemotherapy. (C) Mean-squared error (MSE) distance
between treatment responses shows higher distances between partial responses and stable disease. (D)
scCODA analysis shows significant compositional changes for patients treated with chemotherapy. (E)
DIALOGUE analysis shows several multicellular programs (MCPs) associated with treatment efficacy. (F)
Pairplot of MCP 2.The diagonal shows a cell type specific kernel density estimate of the mean score for
each MCP by sample. In the lower triangle's scatter plots, each point denotes an average patient score
for the cell types labeled on the corresponding row (x-axis) and column (y-axis).
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Discussion

Pertpy facilitates the end-to-end analysis of complex perturbation datasets with a versatile
toolbox of interoperable components, encompassing metadata annotation, data analysis, and
visualization tools. Through shared infrastructure and modules, we developed improved
versions of widely used methods that were originally unmaintained or only easily available to the
R community together with the original authors making them widely available to the community.
Our community effort will ensure that all of these methods are jointly maintained and further
developed. We demonstrated pertpy’s flexibility through several use-cases including the
identification of perturbation-specific gene programmes using a CRISPR screen (Perturb-seq)
dataset, deconvolution of viability-related response signatures in a chemical perturbation
dataset, and deciphering treatment response to drugs in TBNC. Many further use-cases can be
found in pertpy’s extensive tutorials.

As perturbation datasets grow larger and incorporate additional modalities like spatial
transcriptomics, we anticipate the development of specialized methods for analyzing multimodal
perturbation data. By combining efforts such as Squidpy61 and pertpy, additional functionality
designed for spatial perturbations to uncover, for example, differentially regulated
neighborhoods could be made widely available.

Finally, we expect pertpy to support the creation of perturbation atlases through harmonized
data collection, the generation of meaningful perturbation spaces, and the evaluation of these
spaces using pertpy’s distance metrics. Such atlases can comprehensively characterize cell
types under various conditions to capture the wide array of inducible cell states beyond their
basal states. We expect such atlases to become essential for the development of robust and
generative foundation models where perturbation analysis is a key task that can be confidently
evaluated with pertpy’s metrics.

We expect pertpy to lead to more robust biological discoveries through its capability of enriching
measurements with biological metadata. As an extendable and interoperable framework, we
anticipate pertpy to become an enabler for further robust perturbation analysis methods that
tackle the growing complexity and multimodality of perturbation data.

Methods

Implementation of pertpy

Pertpy is implemented in Python and builds upon several scientific open-source libraries
including NumPy62, Scipy63, jax14, scikit-learn64, Pandas64,65, AnnData22, scanpy66, muon23,
NumPyro67, ott-jax68, blitzgsea69, PyTorch70, and scvi-tools12 for omics data handling, matplotlib71

and seaborn72 for data visualization.
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Guide RNA assignment
Assigning relevant guides to each cell is essential in genetic perturbation assays, ensuring that
the observed cellular responses are accurately linked to the intended genetic modifications. This
step is critical for validating experimental design and interpreting results reliably. Pertpy’s
module assigns cells to the most expressed guide RNA if it additionally exceeds an optional
user specified count threshold.

Differential gene expression
Differential gene expression analysis compares the mean gene expression levels between
different conditions or groups to identify genes with statistically significant changes utilizing
statistical models to account for between-sample variability and control for false-discovery rates.
Pertpy provides a unified application programming interface (API) to support a variety of such
models. The first group of models comprises the T-test and Wilcoxon test as simple statistical
tests for comparing expression values between two groups without covariates. The second
group includes models of the linear model family that allow modeling complex designs and
contrasts. Currently included are PyDESeq232, edgeR33 as well as a wrapper around
statsmodels (https://www.statsmodels.org) which provides access to a wide range of regression
models, including ordinary least squares regression, robust linear models and generalized linear
models. Linear model designs can be specified via Wilkinson formulas as known from R
(through formulaic, https://github.com/matthewwardrop/formulaic). Pseudobulk workflows that
account for pseudoreplication bias73 are enabled by integration with scanpy’s get.aggregate()
function. Results tables ranked by adjusted p-value are provided as a pandas data frame and
can be visualized using volcano plots.

Analysis of pooled CRISPR screens with mixscape
CRISPR-Cas9 can sometimes lead to cells escaping gene knockout by receiving an ineffective
in-frame mutation, underscoring the necessity for computational quality control to predict and
enhance their specificity and performance. Mixscape classifies targeted cells, i.e. those
identified as perturbed by presence of a guide RNA, into successfully perturbed (KO) and
targeted but not successfully perturbed (NP) based on their response. In particular, the
mixscape pipeline includes the following steps:

1. Calculate the perturbation-specific signature of every cell, which is the difference of the
targeted and the closest k (defaults to 20) nearest control neighbors.

2. Identify and remove cells that have ‘escaped’ CRISPR perturbation by estimating the
distributions of KO cells. Afterwards, the posterior probability that a cell belongs to the
KO cells is calculated and the cells are binary assigned based on a fixed probability
threshold (defaults to 0.5).

3. Visualize similarities and differences across different perturbations using linear
discriminant analysis.

We implemented mixscape following the implementation of the original authors18. We further
optimized the implementation by using PyNNDescent
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(https://github.com/lmcinnes/pynndescent) for nearest neighbor search for the calculation of the
perturbation signature.

Compositional analysis of labeled groups with scCODA and tascCODA
Tracking cell type shifts is crucial for understanding the underlying mechanisms of disease
progression, tissue regeneration, and developmental biology, offering insights into cellular
responses and adaptations. Despite their critical role in biological processes like disease,
development, aging, and immunity, detecting shifts in cell type compositions through scRNA-seq
is challenging. Statistical analyses must navigate various technical and methodological
constraints, including limited experimental replicates and compositional sum-to-one
constraints34. scCODA and its extension tascCODA both employ Bayesian methods to elucidate
cell type compositional changes with tascCODA being able to also take cell type hierarchies into
account.

The implementations of scCODA 2.0 and tascCODA 2.0 are mathematically equivalent to the
original implementations34,35, but allow for accelerated inference by replacing the Hamiltonian
Monte Carlo algorithm in TensorFlow74 with the no-U-turn sampler from numpyro67. The joint
implementation also allows users to conveniently apply both methods from within the same
framework.

Pertpy further uses MuData23 objects to simultaneously handle cell-by-gene and sample-by-cell
type representations of the same data, simplifying the data aggregation and model specification
steps for scCODA 2.0 and tascCODA 2.0 while ensuring compatibility with other methods
featured in the scverse13 ecosystem. A wide range of visualization options through scanpy66,
ete375, and arviz76 for representation of differentially abundant cell types, their hierarchical
structure, and inference diagnostics respectively are also provided within pertpy.

Compositional analysis of unlabeled groups with Milo
Most methods for comparing single-cell datasets often rely on identifying discrete clusters to test
for differences in cell abundance across experimental conditions. Yet, this approach may lack
the necessary resolution and fail to represent continuous biological processes accurately. To
address these limitations, Milo was designed to conduct differential abundance tests by
assigning cells to overlapping neighborhoods within a k-nearest neighbor graph.

The implementation of Milo is based on Milopy (https://github.com/emdann/milopy). It uses the
same MuData based data structure that the scCODA 2.0 and tascCODA 2.0 implementations
also use. Here, neighborhood counts are stored in a slot in MuData for downstream usage.

Multicellular programs with DIALOGUE
Multicellular programs, or gene programs, refer to the complex regulatory networks and signal
transduction pathways that govern the behavior, differentiation, and communication of cells.
DIALOGUE37 is a matrix factorization method for identifying these specific gene expression
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patterns. The implementation of DIALOGUE in pertpy resembles the original implementation37.
The main differences are

● The R implementation of MultiCCA has been replaced with a Python implementation of
the original mathematical formulation77, found at https://github.com/theislab/sparsecca. In
addition, the Python implementation also has the option to solve for the canonical
covariate weights w using linear programming, allowing for concurrent instead of iterative
optimization over the pairwise factor matrices. This results in weights which are
consistent regardless of the order in which cell types are passed, which was not
previously true.

● A novel gene identification method, referred to as extrema MCP genes, which selects
cells at the extreme values of the MCP (cells with the top 10% and bottom 10% MCP
scores in each cell type), then runs the rank_genes_groups function from scanpy with
default parameters to perform a t-test between the two groups of cells to identify
differentially expressed genes to provide adjusted p-values based on the number of
tested genes.

Enrichment with BlitzGSEA
Gene set enrichment analysis determines whether predefined sets of genes, often associated
with specific biological functions or pathways, show statistically significant, concordant
differences in expression across two biological states or phenotypes. It is used to identify
biological processes that are overrepresented in a ranked list of genes, typically arising from
high-throughput experiments. This approach shifts the analysis focus from individual genes to
the collective behavior of genes within predefined, functionally related groups, facilitating a
deeper understanding of the biological mechanisms underlying observed changes. Pertpy
provides access to a variety of metadata databases that provide gene sets whose enrichment
can be tested for.

We generally followed the enrichment pipeline described in drug2cell78 to test for the enrichment
of gene sets. This pipeline entails:

1. Fetching gene sets from databases.
2. Scoring gene sets by computing the mean expression of each gene group per cell.
3. Performing a differential expression test to get ranked gene groups that are up-regulated

in particular clusters.
4. Determining enriched genes using a hypergeometric test on the gene set scores or using

BlitzGSEA69.

Distances, metrics, and permutation tests
Distance metrics serve as an important baseline in two primary tasks in single-cell perturbation
analysis: 1) identifying relative heterogeneity and response and 2) evaluating and training
single-cell perturbation models. To this end, various commonly used distance metrics have been
implemented to be easily applied to single-cell AnnData objects with accompanying perturbation
or disease labels. In the following, we present the 16 distances, in order of performance
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according to Ji et al.54, that are implemented in pertpy. We use to denote the gene expression𝑥𝑘

in cell , and and for the expression of gene in the perturbed and control conditions,𝑘 𝑥
𝑖

𝑦
𝑖

𝑖

respectively.

● Mean squared error (MSE)
Determines the mean squared distance between the mean vectors of two groups.

𝑀𝑆𝐸 =  1
𝑛 ∑ (𝑥

𝑖
−  𝑦

𝑖
)2

● Maximum mean discrepancy (MMD)
Evaluates the discrepancy between the empirical distributions of two groups using
kernel-based methods. Let denote the number of samples, and the linear kernel𝑛 𝑘(·, ·)
function.
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● Euclidean distance
Calculates the Euclidean distance between the means of the two groups.
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● Energy distance39
Computes a statistical energy distance between two groups based on mean pairwise
distances within and between groups.
We define
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and accordingly. The energy distance is then calculated asδ
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● Kolmogorov-Smirnov Test distance (KS Test)
Applies the KS statistic to measure the maximum distance between the empirical
cumulative distributions of two groups. We define the empirical distribution function for
gene as𝑖
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over all cells of the control condition and analogously for perturbed cells. For each𝑓
^
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gene, the maximum distance between both distribution functions is
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computed, and the results averaged over all genes to yield a single distance value.
● Mean absolute error (MAE)

Measures the mean absolute difference between the mean vectors of two groups.
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𝑀𝐴𝐸 =  1
𝑛 ∑ 𝑥

𝑖
−  𝑦

𝑖| |
● Two-sided T-test statistic

Uses the T-test statistic to compare the means of two groups under the assumption of

unequal variances. Let and denote the variances of gene for perturbed and𝑠
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2 𝑠
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avoid dividing by zero.

𝑡 = 1
𝑛 ∑

𝑥
𝑖
− 𝑦

𝑖

𝑠
𝑥𝑖

2

𝑛
𝑥
+ϵ  + 

𝑠
𝑦𝑖

2

𝑛
𝑦
+ϵ

● Cosine distance
Computes the cosine of the angle between the mean vectors of the two groups.

𝐶𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑥 ·𝑦
𝑥| |· 𝑦| |

Where denotes the dot product.·
● Pearson’s distance

Uses Pearson correlation to assess the linear correlation between the mean vectors of
two groups, returning 1 minus the correlation coefficient. Let and denote the mean𝑥 𝑦
expression over all genes.
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𝑖
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● Coefficient of determination (R²) distance
Calculates the coefficient of determination between the mean vectors of two groups.
Note that, unlike most other distances listed here, R² is not symmetric/has not been
symmetrized.

𝑅2 =
∑(𝑥

𝑖
−𝑦

𝑖
)2

∑(𝑥
𝑖
−𝑥)

2

Where is the mean expression over all genes in the perturbed condition.𝑥
● Classifier control probability

To compute the classifier class projection distance between perturbations and control𝑃
condition , we train a linear regression classifier to distinguish between and , with𝐶 𝐶 𝑃
20% of held out for testing. To calculate the distance for perturbation class , we𝑃 𝑃

𝑖

obtain the average post-softmax classification probabilities of all cells in and return the𝑃
𝑖

probability of class .𝐶
● Kendall tau distance

Applies Kendall's tau, a measure of ordinal association, between the mean vectors of
two groups. We define as the number of concordant pairs, as the number of𝐶 𝐷
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discordant pairs, as the number of ties in ’s ranking, and as the number of ties in𝑋 𝑥 𝑌 𝑦
’s ranking.

τ'
𝑥𝑦

= (1 − (𝐶−𝐷)
(𝐶+𝐷+𝑋) *(𝐶+𝐷+𝑌)

) · 𝑛·(𝑛−1)
4

● Spearman’s rank distance
Similar to Pearson’s distance, but uses Spearman rank correlation to measure non-linear
relationships.

ρ =
6Σ𝑑

𝑖
2

𝑛(𝑛2−1)

Where represents the difference in rank of gene across both samples.𝑑
𝑖

𝑖

● Wasserstein distance
Also known as Earth Mover's Distance, computes the cost of optimally transporting mass
from one distribution to another. Let be the first order Wasserstein distance𝑊(𝑝, 𝑞)
between probability distributions and , the set of all joint distributions with𝑝 𝑞 Γ(𝑝, 𝑞)
marginals and , the cost of transporting a unit of mass from to , and and𝑝 𝑞 𝑐(𝑥, 𝑦) 𝑥 𝑦 𝑋 𝑌
are the support sets of and , respectively.𝑝 𝑞

𝑊(𝑝, 𝑞) = inf
γ∈Γ(𝑝,𝑞)

 
𝑋 ×𝑌

∫ 𝑐(𝑥, 𝑦)𝑑γ(𝑥, 𝑦)

● Symmetric Kullback-Leibler (KL) divergence
Measures how one probability distribution diverges from a second. In the case of
discrete inputs, the KL divergence is calculated as follows:

𝐷
𝐾𝐿

(𝑃||𝑄) =
𝑥∈Ω
∑ 𝑃(𝑥) log( 𝑃(𝑥)

𝑄(𝑥) )

Where and are discrete probability distributions.𝑃 𝑄
For non-discrete inputs, the KL divergence is computed as

𝐾𝐿 = ∑ ln
𝑠

𝑦
𝑖

𝑠
𝑥

𝑖

+
𝑠

𝑥
𝑖

2 +(𝑥
𝑖
−𝑦

𝑖
)2

2*𝑠
𝑦

𝑖

2 − 1
2

Where denotes the standard deviation.𝑠
● Classifier class projection

The classifier class projection distance between perturbation and control condition𝑃
𝑖

𝐶
𝑖

is calculated by training a linear regression classifier on all and all , subsequently𝑥 ∉ 𝑃
𝑖

𝐶

retrieving the average post-softmax classification probabilities of all cells , and𝑥
𝑖

returning the probability of class .𝐶
𝑖

The following distance was also implemented in pertpy but were not part of the aforementioned
benchmark:

● Negative Binomial Log Likelihood (NBLL)
Fits a negative binomial distribution to one group and uses it to compute the log
likelihood of the other group's data. For each gene which is not overdispersed in , we𝑖 𝑥
fit a negative binomial distribution with parameters and . The distance between twoµ

𝑖
θ

𝑖
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categories and is then computed as the average negative log likelihood of given𝑥 𝑦 𝑦
the parameters of the distribution fit on for each gene , that is,𝑥 𝑖

1/n
𝑖=1

𝑁

∑ θ
𝑥

𝑖

* (𝑙𝑜𝑔(θ
𝑥

𝑖

) − 𝑙𝑜𝑔(θ
𝑥

𝑖

+ µ
𝑥

𝑖

))

     + 𝑦
𝑖

* (𝑙𝑜𝑔(µ
𝑥

𝑖

) − 𝑙𝑜𝑔(θ
𝑥

𝑖

+ µ
𝑥

𝑖

))

)     + 𝑙𝑛(Γ(𝑦
𝑖

+ θ
𝑥

𝑖

)) − 𝑙𝑛(Γ(θ
𝑥

𝑖

)) − 𝑙𝑛(Γ(𝑦
𝑖

+ 1)

The distances module allows users to quickly fetch the pairwise distances between any set of
categorically labeled cells. The distance_tests module allows users to compute a p-value
through Monte-Carlo permutation testing, thereby providing a confidence value for any given
distance. This can be particularly comforting in cases in which distances have been used as
proxies for real biological response in gene expression space.

Note that while we refer to all of the above as “distances,” they do not all meet the mathematical
definition of a distance; deviations from the standard distance axioms have been detailed in Ji et
al54. While these distances can be used with any single-cell measurement, it should be noted
that the ranking above was performed in the context of single-cell transcriptomics.

We also implemented two metrics for evaluating expression prediction models. To evaluate if
perturbation prediction leads to meaningful biological conclusions we implemented a differential
expression correlation metric. This metric uses Spearman correlation to compare differential
gene ranking from the scanpy rank_genes_groups function performed on control vs real
perturbed data and control vs predicted perturbed data. To evaluate if the distribution of gene
expression means vs variances corresponds to real data we used a similar method as proposed
before79. The distribution of expression mean-variance 2D relationship was estimated with
kernel density for both real and predicted perturbed data. The distance between the two
densities was estimated based on the difference of values sampled across the whole data
range.

Perturbation ranking with Augur
Augur aims to rank or prioritize cell types according to their response to experimental
perturbations. The fundamental idea is that in the space of molecular measurements cells
reacting heavily to induced perturbations are more easily separated into perturbed and
unperturbed than cell types with little or no response. This separability is quantified by
measuring how well experimental labels (e.g. treatment and control) can be predicted within
each cell type. Augur trains a machine learning model predicting experimental labels for each
cell type in multiple cross validation runs and then prioritizes cell type response according to
metric scores measuring the accuracy of the model. For categorical data Augur uses the area
under the curve and for numerical data it uses concordance correlation coefficient.

Our implementation of Augur follows the original implementation80,81. We further optimized it by
parallelizing the training of the predictive models. Moreover, the pertpy implementation allows
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for gene selection using either the originally used variance based implementation or scanpy’s
highly variable genes.

Causal identification of single-cell experimental perturbation effects with
CINEMA-OT
Cellular responses to environmental signals are crucial for understanding biological processes.
Effectively extracting biological insights from such data, especially through single-cell
perturbation analysis, remains challenging due to a lack of methods that can directly account for
underlying confounding variations. CINEMA-OT distinguishes between confounding variations
and the effects of perturbations, achieving an optimal transport match that mirrors counterfactual
cell pairings. These pairings allow for the analysis of causal perturbation responses, enabling
novel approaches including individual treatment-effect analysis, clustering of responses,
attribution analysis, and the examination of synergistic effects.

The implementation of CINEMA-OT is based on the original implementation38. To further
accelerate and simplify the implementation we used ott-jax68.

Perturbation spaces
Pertpy discriminates between two fundamental domains to embed and analyze data: the “cell
space” and the “perturbation space”. In this paradigm, the cell space represents configurations
where discrete data points represent individual cells. Conversely, the perturbation space departs
from the individualistic perspective of cells and instead categorizes cells based on similar
response to perturbation or expressed phenotype where discrete data points represent
individual perturbations. This specialized space enables comprehending the collective impact of
perturbations on cells. We differentiate between perturbation spaces (where we create one data
point for all cells of one perturbation) and cluster spaces (where we cluster all cells and then test
how well the clustering overlaps with the perturbations).

Pseudobulk Space
This space takes the pseudobulk of a covariate such as the condition to represent the
respective perturbations using the Python implementation of DecoupleR82

(https://github.com/saezlab/decoupler-py) which can subsequently be embedded.

Centroid Space
The Centroid Space calculates the centroids as the mean of the points of a condition for a
pre-calculated embedding. Next, it finds the closest actual point to that centroid which
determines the perturbation space point for that specific condition.

Multilayer Perceptron Classifier Space
The Multilayer Perceptron (MLP) Classifier Space trains a feed-forward neural network to
predict which perturbation has been applied to a given cell. By default, a neural network with
one hidden layer of 512 neurons and batch-normalization is created and trained using a batch

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606516doi: bioRxiv preprint 

https://paperpile.com/c/0B1Agy/wpsm
https://paperpile.com/c/0B1Agy/GwCO
https://paperpile.com/c/0B1Agy/genC
https://github.com/saezlab/decoupler-py
https://doi.org/10.1101/2024.08.04.606516
http://creativecommons.org/licenses/by/4.0/


size of 256. However, all these hyperparameters can be customized by the user to suit the
specific requirements of the dataset. We account for class imbalances by oversampling
perturbations with fewer instances. The MLP is trained using cross entropy loss until detection
of overfitting (early stopping), or until it reaches the maximum number of epochs to train, set to
40 by default. To obtain perturbation-informed embeddings of the cells, the cell representations
in the last hidden layer are extracted. Another perturbation space such as pseudobulk can be
applied downstream to obtain a per-perturbation embedding if required. For creation and
training of the MLP, we leverage the PyTorch library.

Logistic Regression Classifier Space
The Logistic Regression Classifier Space generates perturbation embeddings, as opposed to
per-cell embeddings computed by the MLP classifier space. A logistic regression classifier is
trained for each perturbation individually to determine if the respective perturbation was applied
to a cell or not. Depending on user preference, the classifier can be trained on the
high-dimensional feature space or on a precomputed embedding, such as one obtained through
PCA. For each perturbation, we extract the coefficients of the logistic regression classifier,
trained until convergence or reaching the maximum number of iterations (1000 by default), to
derive a per-perturbation embedding. We use scikit-learn’s implementation for the logistic
regression classifier.

DBScan Space
DBSCAN83 (Density-Based Spatial Clustering of Applications with Noise) is a clustering
algorithm that identifies clusters in a dataset based on the density of data points, grouping
together points that are closely packed while marking points in low-density regions as outliers.
Pertpy’s implementation of a DBScan Space is based on scikit-learn’s DBScan implementation.

K-Means Space

K-means is a clustering algorithm that partitions a dataset into K distinct, non-overlapping
clusters by minimizing the distance between data points and the centroid of their assigned
cluster. It iteratively adjusts the positions of centroids to reduce the total variance within clusters,
making it suitable for identifying spherical-shaped clusters in feature space. Pertpy’s
implementation of a K-Means Space uses k-means clustering as implemented in scikit-learn.

Label transfer
Label transfer in single-cell analysis involves using annotations of a datasets to predict the
states of unannotated data points leveraging similarities in gene expression patterns or nearest
neighbors. Pertpy’s label transfer function uses PyNNDescent to find the closest neighbors for
all data points and then uses majority voting to label unlabeled data points.
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Metadata support

Pertpy provides access to several databases that contain additional metadata for cell lines,
mechanisms of actions, and drugs. On request, the database content gets cached locally and
the respective information gets stored in the appropriate slots of the passed AnnData object.

Cell line
Pertpy provides access to DepMap (https://depmap.org/portal/, version 23Q4) and Genomics of
Drug Sensitivity in Cancer (GDSC)26. The following information can be obtained:

● Cell Line Identification: Comprehensive details such as cell line names, aliases,
DepMap IDs, and Cancer Cell Line Encyclopedia (CCLE)84 names.

● Genetic Information: Data on genetic aberrations prevalent in cancer cell lines,
including mutations, copy number alterations (CNAs), fusion genes, and comprehensive
gene expression profiles.

● Dependency Scores: Quantitative assessments of gene essentiality that showcases the
impact of specific genes on the viability of cancer cell lines.

● Drug Sensitivity: Detailed measurements of how cancer cell lines respond to various
drugs, with metrics such as IC50 values providing insights into the effectiveness and
potential toxicity of therapeutic compounds.

● Lineage and Type: Information categorizing cell lines based on their tissue of origin and
the type of cancer they represent.

● Molecular Subtypes: Classifications based on detailed genetic, epigenetic, and
proteomic analyses, which help in understanding the heterogeneity within and across
cancer types.

● Phenotypic Data: Observations on cell growth rates and morphological characteristics,
which can correlate with genetic traits and drug responses.

● Genomic Profiling: Includes high-resolution data from whole-exome and whole-genome
sequencing efforts, offering a comprehensive view of the genetic landscape of cell lines.

● Proteomics Profiling: Protein intensity values acquired using data-independent
acquisition mass spectrometry (DIA-MS) from DepMap Sanger.

Mechanism of Action
Pertpy provides access to The Connectivity Map (CMAP)27, also commonly referred to as CLUE
(CMap and LINCS Unified Environment) which hosts the infrastructure. CMAP is a resource
designed to help researchers discover functional connections between diseases, genetic
perturbation, and drug action. The following information can be obtained:

● Compound names: The name of the compound of genetic perturbagen.
● Mechanism of Action: The specific biochemical interactions through which compounds

exert their effects on cellular functions. This includes detailed descriptions of whether a
compound acts as an inhibitor, activator, or modulator of particular molecular targets.
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● Target: The sets of genes or proteins that directly interacted with or were affected by the
perturbagen.

Drug
Pertpy provides access to pubchem28 using pubchempy
(https://github.com/mcs07/PubChemPy). PubChem is a comprehensive resource for chemical
information, primarily known for its vast database of chemical molecules. The following
information can be obtained:

● Chemical Identifiers: Each chemical in PubChem is assigned unique identifiers,
including CAS numbers, InChI strings, and SMILES notation.

Pertpy further provides access to the CHEMbl29 database. ChEMBL is a comprehensive
database maintained by the European Bioinformatics Institute (EBI), part of the European
Molecular Biology Laboratory (EMBL). It provides a vast collection of data on bioactive
molecules with drug-like properties. The following information can be fetched:

● Compounds: The names of the compounds.
● Targets: The target gene sets of the compounds.

Benchmarking runtime
To evaluate computational efficiency, we measured execution time and resource consumption
for three tools implemented in pertpy: Augur, mixscape, and scCODA 2.0. Following their
respective tutorials, we developed corresponding scripts in their original implementation. These
scripts were executed on a system equipped with 8 Intel(R) Xeon(R) Gold 6142 CPUs @
2.60GHz and 768GB of RAM, with 16GB allocated specifically for these tasks, in a Linux
environment. This setup ensured accurate and reproducible timing measurements. Each script
was run three times to guarantee consistency. Timing was recorded excluding the import time,
using Python's “time” package and the native function ‘Sys.time()’ in R. The results were
displayed in a box plot (Supplementary Figure 1), which compared the execution time in
seconds across each tool and implementation.

Use-cases
For the following analyses, we used the latest pertpy version 0.8.0. We deposited a full Conda
environment to reproduce our results in the associated reproducibility repository together with all
result tables of our analysis.

Analysis of the CRISPR screen dataset
We obtained the original dataset from the original publication together with the labels of the
gene programs. The dataset contained 111255 cells and 19018 genes. We followed the
standard scanpy preprocessing pipeline to log normalize the data, calculate 4000 highly variable
genes, obtain PCA components, and embedded the data into a UMAP space for visualization
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purposes. Moreover, we scored cell cycle genes using the list of Tirosh 201685.

Afterwards, we used pertpy’s implementation of mixscape to calculate a perturbation signature
which we further embedded into UMAP space. Next, we applied mixscape to the perturbation
signature to calculate the perturbation scores that are automatically binarized to assign
successful and unsuccessful perturbations. We used scikit-learn to calculate the silhouette
before and after applying mixscape. The Silhouette Score varies between -1 and +1, signifying
that a higher score denotes good alignment of an object with its own cluster and a poor
alignment with adjacent clusters.

We applied pertpy’s multilayer perceptron based Discriminiator Classifier to the corrected space
and embedded the pseudobulk of the penultimate layer feature values with UMAP. Pertpy’s
label transfer function was applied to the nearest neighbor graph. To identify gene programs
affected by perturbations in an unannotated cluster in the UMAP, we performed gene set
enrichment analysis on either up- or downregulated genes (adjusted p-value cutoff of 0.01) in
the cluster of interest, identifying the top three up- and downregulated reactome86 pathways for
the cluster.

Analysis of the chemical perturbation dataset
We obtained the dataset from the original publication of the study which already contained
annotations of cell lines, cell line quality, channel, disease, dose units, dose values, and many
more fields that are documented in our analysis notebook. We filtered out cells perturbed by
CRISPR, leaving 154710 cells and 32738 genes of 172 cell lines, treated with 13 different
drugs. We applied standard preprocessing by filtering genes that were present in less than 30
cells and log normalizing the counts. 4000 highly variable genes were computed using the
highly_variable_genes function of scanpy and used as the basis for downstream analyses,
except when examining viability-dependent and -independent drug responses.

Next, we fetched all available cell line metadata from Cancer Dependency Map (DepMap) and
Genomics of Drug sensitivity in Cancer using pertpy to annotate the cell lines by their DepMap
ID with cell lineages, compound targets, and mechanism of action usingConnectivity Map
(CMAP)27. We further added drug sensitivities of cell lines to anti-cancer therapeutics from
Genomics of Drug Sensitivity in Cancer (GDSC)26.

Pseudobulks were generated using pertpy’s PseudobulkSpace function by perturbation. We
used the expression of the cell lines labeled as “control” as base lines. Bulk RNA expression
data was fetched from the Cancer Cell Line Encyclopedia using the data from the Broad
institute via pertpy. We used pertpy to calculate row-wise correlations of the expression profiles
of the cell lines to obtain Pearson correlation values and p-values.

Finally, we used pertpy to disentangle drug responses into components that are independent of
and dependent on the sensitivity of a certain cell line to a drug. We followed the approach
presented in the paper introducing the original dataset16, but replaced functionalities with
pertpy’s own implementation whenever possible. While previous work focused on the drug
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trametinib, we here investigated treatment responses to dabrafenib. We used pertpy’s
annotate_from_gdsc function to query the IC50 values for each cell line-drug combination using
the GDSC2 database. Next, we computed the expression log-fold change (log-FC) between
treated cells and control based on raw counts for each cell line individually, using pertpy’s
implementation of EdgeR. Then, for each gene, the following linear regression model was fit:

Log-FCGene = Intercept Slope Dabrafenib sensitivity of cell lines+ ×
The fit model enables the decomposition of the observed change in gene expression in the
treatment group into two components: a viability-independent response (intercept) and a
viability-dependent response (slope). Genes with a Benjamini-Hochberg corrected p-value
below 0.05 for either the slope or intercept were considered significant and subsequently used
for gene set enrichment analyses using the gProfiler87 API.

Analysis of the TNBC treatment dataset
We obtained the dataset from the original publication which comprises scRNA- and
ATAC-sequencing data from 22 patients with advanced triple-negative breast cancer (TNBC),
treated with paclitaxel alone or in combination with the anti-PD-L1 therapy atezolizumab. We
focused on the transcriptomic data which encompasses approximately 489,490 high-quality
immune cells with 27085 measured genes across 99 high resolution cell types. We filtered
genes with less than 10 cells, log normalized the data and selected highly variable genes using
scanpy defaults. We calculated a PCA representation using scanpy with default settings that
uses the “arpack” solver. For the following analyses, we filtered the dataset to only keep cell
types that were retained in all response groups.

To determine compositional changes, we applied pertpy’s implementation of scCODA per
treatment. scCODA’s automatic reference cell type detection determined intermediate
monocytes as the reference cell type which we used for both treatments for consistency.
Compositional changes with a false discovery rate of 0.1 (10%) were marked as credible effects.

We calculated the mean-squared error distance between the respective groups in a pairwise
fashion using pertpy’s distance module on the PCA representation. We repeated this process
three times for both treatments jointly, only chemotherapy treatment, and only anti-PDL1 and
chemotherapy combination treatment. The results were visualized with seaborn.

DIALOGUE decomposition analysis was carried out exclusively on pre-treatment tumor
samples. The sample labeled "Pre_P010_t" was excluded because it demonstrated low diversity
in cell types. The analysis was confined to cell types that had a minimum of three cells per
sample in the remaining patient samples. The number of MCPs was to set 10 with normalization
enabled and the ‘LP’ solver.

A predictive MCP for treatment response was determined by individually testing each cell type
within each MCP using a t-test for independent samples. To adjust for the number of cell types
tested, the Benjamini-Hochberg correction method was applied. To identify significantly
associated genes with the MCPs per cell type, cells at the extreme ends of the MCP distribution
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were selected, specifically, those in the top 10% and bottom 10% of MCP scores for each cell
type. The scanpy rank_genes_groups function with default parameters was subsequently used.
This function conducts a t-test between the two cell groups to pinpoint genes that are
differentially expressed, offering an adjusted p-value that accounts for the total number of genes
assessed. We filtered for heat shock proteins to determine HSPA1B to be significantly
differentially expressed for Naive T cells (adj. P≤ 2.9e-272), CD8 effector memory cells (adj. P≤
1.2e-172), CD4 regulatory T cells (adj. P≤ 5.3e-41), Plasma B cells (adj. P≤ 6.5e-34), CD4
central memory T cells (adj. P≤ 1.1e-01), and Memory B cells (adj. P≤ 6.5e-37)

To determine if the identified genes played a role in altered cell-cell interactions, gene
comparisons were made for each cell type against the Nichenet database of protein-protein
interactions, using gene names as identifiers88. An interaction was classified as MCP-associated
if both the corresponding receptor and ligand were present among the significant genes
(adjusted P-value less than 0.01) from two different cell types. An interaction was deemed
MCP-ligand-associated if the ligand was linked to MCP in one cell type while the receptor
exhibited a normalized mean expression over 1 in another cell type. Similarly, an interaction was
considered MCP-receptor-associated if the receptor was connected to a MCP in one cell type
and the ligand had at least 10 counts in the other cell type.

Code and data availability
The pertpy source code is available at https://github.com/scverse/pertpy under the Apache 2.0
license. Further documentation, tutorials and examples are available at
https://pertpy.readthedocs.io.

Scripts, notebooks, and analysis results to reproduce our analysis and figures are available at
https://github.com/theislab/pertpy-reproducibility.

All used datasets are available through out-of-the-box dataloaders in pertpy.
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Supplementary Material

Supplementary Tables

MCP 1 MCP 2 MCP 3 MCP 4 MCP 5 MCP 6 MCP 7 MCP 8 MCP 9 MCP 10

Memory B cells 0.6829 0.1022 0.9515 0.9911 0.2550 0.7412 0.9577 0.8645 0.9990 0.7723

CD4 central memory
T cells

0.4999 0.1022 0.9515 0.8197 0.3515 0.7412 0.9577 0.7628 0.9990 0.2804

CD4 regulatory T
cells

0.4999 0.1022 0.9515 0.9761 0.2637 0.6213 0.9577 0.9589 0.9990 0.4192

CD8
mucosal-associated
invariant T cells

0.4999 0.1392 0.9515 0.8674 0.2637 0.7880 0.9577 0.8214 0.9990 0.7723

CD8 effector memory
T cells

0.4999 0.1115 0.9515 0.8674 0.6207 0.7880 0.9577 0.7628 0.9990 0.7723

CD8 tissue-resident
memory T cells

0.4999 0.1392 0.9515 0.8197 0.6823 0.5370 0.9577 0.7628 0.9990 0.2804
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Naïve T cells 0.4999 0.1022 0.9515 0.8197 0.2550 0.5370 0.9577 0.7628 0.9990 0.2804

Intermediate
monocytes

0.9240 0.1115 0.9515 0.8197 0.6823 0.5370 0.9577 0.8962 0.9990 0.2804

Plasma B cells 0.9240 0.1022 0.9515 0.9911 0.2550 0.7880 0.9577 0.7628 0.9990 0.7723

Supplementary Table 1. DIALOGUE multicellular program adjusted p-values per cell type.

Supplementary Figures

Supplementary Figure 1. Runtime comparison of tools between pertpy’s implementation and
correspondingly the existing R implementation or the formerly published original implementation. Tools

were selected for benchmarking if the implementations differed substantially.
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Supplementary Figure 2. (A) Pair plots for MCP 2. The kernel density estimate along the diagonal shows
the average score for each MCP by sample, specific to the indicated cell type. In the lower triangle's

scatter plots, each point signifies the average measurement from a patient for the cell types denoted by
the respective row (x-axis) and column (y-axis). MCP 2 separates poor response to the PDL-1 inhibitors.
(B) MCP 2 extrema genes per cell type. Shown are the respective five genes with the highest and lowest

scores for MCP 2.
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